Genome-Scale Variant Interpretation

Automated Radiation Dose Estimation

Mission Statement

MutationForecaster® (mutationforecaster.com) is Cytognomix’s patented web-portal for analysis of all types of mutations (coding and non-coding), including interpretation, comparison and management of genetic variant data. It’s a fully automated genome interpretation solution for research, translational and clinical labs.

MutationForecaster® combines our world-leading genome interpretation software on your exome, gene panel, or complete genome (Shannon transcription factor and splicing pipelines, ASSEDA, Veridical) with the Cytognomix User Variation Database and  Variant Effect Predictor.  With our integrated suite of software products, analyze coding, non-coding, and copy number variants, and compare new results with existing or your own database.  Select predicted mutations  by phenotype using articles with CytoVisualization Analytics.  With Workflows,  automatically perform end-to-end analysis with all of our software products.

Download an 1 page overview of MutationForecaster®link .

You can now experience our integrated suite of genome interpretation products through a free trial of MutationForecaster®. Once you register, analyze datasets that we have analyzed in our peer-reviewed publications with any of our software tools.

Ionizing radiation produces characteristic chromosome changes. The altered chromosomes contain two central constrictions, termed centromeres, instead of one (known as dicentric chromosomes [DCs]). Chromosome biodosimetry is approved by the IAEA for occupational radiation exposure, radiation emergencies, or monitoring long term exposures.  In emergency responses to a range of doses, labs need efficient methods that identify DCs.

Cytognomix has developed  a novel approach to find DCs that is independent of chromosome length, shape and structure from different laboratories (paper: TBME).  The Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) software  works on multiple platforms and uses images produced by any of the existing automated metaphase capture systems found in most cytogenetic laboratories. ADCI is now available for for trial or  purchase (link).  Or contact us for details (pricing).

ADCI* uses machine learning based algorithms with high sensitivity and specificity that distinguish monocentric and dicentric chromosomes (Try the Dicentric Chromosome Identifier web app). With novel image segmentation, ADCI has become a fully functional cytogenetic biodosimetry system. ADCI takes images from all types of commercial metaphase scanning systems,  selects high quality cells for analysis, identifies dicentric chromosomes (removing false positives), builds biodosimetry calibration curves, and estimates exposures.  ADCI fulfills the criteria established by the IAEA for accurate triage biodosimetry of a sample in less than an hour. The accuracy is comparable to an experienced cytogeneticist. Check out our online user manual: wiki.

We find and validate mutations that others cannot with advanced,  patented genomic  probe and bioinformatic technologies. Cytognomix continues our  long track record of creating technologies for genomic medicine. We anticipate and implement the needs of the biomedical and clinical genomics communities.

Additional Services

Browse the products section of the menu found in the header bar for more information regarding any of our services.

Latest Posts

October 21. Platform presentation at ASHG using single copy FISH

This week, listen to Wahab Khan present our latest discovery using ab initio scFISH at the 2013 meeting of the American Society of Human Genetics: Title: Non-random, locus-specific differences in DNA accessibility are present in homologous metaphase chromosomes.(168) (10:00AM-10:15AM on Thursday October 24, location: Grand Ballroom CDE, Concourse Level, Westin Boston Waterfront Hotel) (Platform) Author(s): W. […]

September 19. Abstract on metaphase epigenetics: platform presentation at American Society of Human Genetics meeting

Non-random, locus-specific differences in DNA accessibility are present in homologous metaphase chromosomes. W. A. Khan1,3, P. K. Rogan2,3,4, J. H. M. Knoll1,3,4 1) Department of Pathology; 2) Departments of Biochemistry and Computer Science; 3) University of Western Ontario, London, Ontario, Canada; 4) Cytognomix, London, Ontario, Canada. / pay day installment loanspayday loans without a checking […]

September 16, 2013. US patent to be awarded on breakthrough radiation biodosimetry technology

Cytognomix has received a Notice of Allowance from the US Patent and Trademark office for our patent application, “Centromere Detector and Method for Determining Radiation Exposure From Chromosome Abnormalities.”  All claims that were applied for were allowed in the soon to be issued patent. The application is available at this link: US Patent Application Ser. No […]

September 6, 2013. Shannon pipeline highlighted at meeting on Clinical Applications of Next Generation Sequencing

Cytognomix’s Shannon pipeline has been highlighted in a report published describing the 2013 annual scientific meeting of the Human Genome Variation Society (HGVS) in Paris, France. The paper’s authors, Sian Ellard,George P. Patrinos, and William S. Oetting, write: www.buildingtechservices.com “Although NGS can identify numerous sequence variants, a major problem is predicting the functional consequence of mutations […]

August 13, 2013. Paper accepted on evaluation of mutation prediction methods

Letter to the editor: “Best practices for evaluating mutation prediction methods” Available online: Human Mutation, in press. Peter K. Rogan(1,2) and GuangYong Zou(3) (1) Biochemistry, (2) Computer Science, (3) Epidemiology and Biostatistics Schulich School of Medicine and Dentistry, Western University, London ON [available upon request. Contact: info@cytognomix.com] loans for credit scores under 500      

July 31, 2013. Paper accepted for oral presentation at the 63rd American Society of Human Genetics annual meeting

Session 27: Causes and Consequences of Chromosomal Variations. Title: Non-random, locus-specific differences in DNA accessibility are present in homologous metaphase chromosomes. Authors: Wahab Khan, Peter Rogan, and Joan Knoll. Thursday, October 24, 10 AM. Boston Convention & Exhibition Center, Grand Ballroom CDE, Concourse Level bad credit loans guaranteed approvalcashback rewardssecure cash loans online This study examines locus […]