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Intensity Integrated L aplacian-Based Thickness
Measurement for Detecting Human Metaphase
Chromosome Centromere Location
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Abstract—Accurate detection of the human metaphase chro-
mosome centromere is an important step in many chromosome
analysis and medical diagnosis algorithms. The centromere loca-
tion can be utilized to derive information such as the chromosome
type, polarity assignment, etc. Methods available in the literature
yield unreliable results mainly due to high variability of morphol-
ogy in metaphase chromosomes and boundary noise present in the
image. In this paper, we have proposed a multistaged algorithm
which includes the use of discrete curve evolution, gradient vector
flow active contours, functional approximation of curve segments,
and support vector machine classification. The standard Laplacian
thickness measurement algorithm was enhanced to incorporate
both contour information as well as intensity information to obtain
a more accurate centromere location. In addition to segmentation
and width profile measurement, the proposed algorithm can also
correct for sister chromatid separation in cell images. The pro-
posed method was observed to be more accurate and statistically
significant as compared to a centerline-based method when tested
with 226 human metaphase chromosomes.

Index Terms—Centromere detection, chromosome analysis,
Laplacian-based thickness measurement.

|. INTRODUCTION

HE centromere can be used in identifying the chromosome
type, number, and also in diagnostic processes such as the
chromosome dicentric assay (see Fig. 1). The centromere is
characterized by a constriction of the width of the chromosome.
Detecting the human metaphase centromere location presents
unique challenges.
The morphology and lengths of chromosomes can vary sig-
nificantly between different growth conditions and cytogenetic
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Fig. 1. Sample graphical representation of a human metaphase chromosome
with key components and regions labeled for reference.

Fig. 2. Depiction of various degrees of sister chromatid separation present in
some Geimsa stained chromosome cell images from a radiation biodosimetry
laboratory (aand b) aswell as somelengthy chromosomes characteristic to ones
prepared at a clinical cytogenetic laboratory (c and d) which are prepared with
small, but significant differences in the laboratory cell preparation procedures.

preparations. Detection of subtle structural chromosome abnor-
malities at high resolution requires methods (such as addition
of DNA intercalating agents, reduced exposure to colcemid,
cell cycle synchronization, 34 day lymphocyte culture) that
reduce chromosome condensation or arrest chromosomes at
prometaphase. Numerical chromosome abnormalities or low-
frequency large structural acquired abnormalities(e.g., dicentric
chromosomes) present in cancer or biodosimetry samplescan be
processed with methods (such as prolonged colcemid time and
concentration; two days cell culture) that increase the number
of cellsin metaphase but result in shorter chromosome lengths.
Shorter, more condensed chromosomes often have separated or
distinct sister chromatids on each arm and fewer chromosomal
bands (see Fig. 2).

The width constriction on higher banded chromosomes can
be missed easily due to bends or noise on the chromosome
boundary, while chromosomes with sister chromatid separation
tend to mislead the width profile calculation near the telomeric
region. This constriction can be identified using the chromo-
some width profile which can be defined as the sequential width
measurements along the centerline or the axis of symmetry of
the chromosome.

From an image analysis point of view, metaphase chro-
mosomes pose numerous challenges. Morphological variabil-
ity caused by nonrigid chromosome structures is one promi-
nent factor. Furthermore, the stage of mitosis (cell division
cycle) at which the cells were arrested and the microtubule
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polymerization inhibitors significantly affect chromosome ap-
pearance. These factors, which can dictate the presence and
the degree of sister chromatid separation as well as the length
and width of chromosomes in that cell, are usually standard-
ized within but not necessarily between laboratories. Therefore,
effective chromosome image processing techniques must ac-
curately account for these sources of variability in detecting
cardinal features, such as centromeres, in order to distinguish
different chromosomes from one another and from abnormali-
ties. Fig. 2 depicts a sample of chromosomes with high shape
variability.

Published methods for centromere identification can be in-
consistent due to variable morphologies and boundary noise
present in images of metaphase chromosomes. Chromosome
segmentation methods for centromere identification are funda-
mentally distinguished as either centerline-based methods or
methods based on other features.

A. Centerline-Based Methods

Many published algorithms attempt to detect the centromere
location by detecting the constriction along the centerline of the
chromosome. Although Piper and Granum [1] approached this
by taking the second moment along the centerline, a common
approach is to calculate feature profiles along scan lines per-
pendicular to the centerline [2]. In a similar approach, Wang
et al. used these scan lines or trellis structures which are per-
pendicular to the centerline of the chromosome to extract the
shape profile, the width profile (collection of width measure-
ments), and the banding patterns of chromosomes[3]. All these
methods are proneto having spurious branchesin the centerline.
We previously proposed an algorithm to overcome this problem
and yield a reliable centerline [4]. Yet this method could also
give false positives as noise on the centerline (introduced by a
noisy object boundary) can result in the scan lines missing the
actual constriction at the centromere location. Mohammad [5]
used the centerline (using our previous approach [6]) to detect
the centromere | ocations which were derived using the degree of
concavity of the object boundary whichisascalevariant feature.
However, this method al so suffers from boundary noisein chro-
mosome cell images which are reflected both on the centerline
as well as on the concavity measuring algorithm. Furthermore,
the presence of high degree of sister chromatid separation can
also introduce error into the centerline detection as well as to
the centromere localization.

B. Methods Based on Other Features

Some of the methods in the literature do not use the cen-
terline for localizing the centromere location. Mousavi and
Ward assigned a membership value for each pixel of DAPI
(4',6-diamidino-2-phenylindole) and FITC (fluorescein isothio-
cyanate) images (with centromere probes) based on an iterative
fuzzy agorithm [7]. Yet, this method has limited scope of ap-
plication as it depends on special specimen preparation and
information in the form of centromere probes and FITC im-
ages. Moradi et al. [8] and Faria et al. [9] took the horizontal
and vertical projection vectors of the binary segmented chro-
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mosomes. These projection vectors were obtained by summing
up the number of object pixels in the binary segmented image
in each horizontal and vertical directions and the centromere
was located by finding the global minimum in these vectors.
Chromosomes with a bend greater than 90° as well as acrocen-
tric chromosomes could not be handled accurately using this
method.

Despite the fact that centerline-based methods perform bet-
ter than their counterpart, these approaches are still susceptible
to errors introduced by noisy object boundaries. Therefore, we
have proposed to utilize the centerline of achromosome not asa
means of deriving the scan lines (trellisstructure), but for merely
dividing the chromosome into two symmetric partitions. This
proposed algorithm can automatically detect sister chromatid
separation near the telomere region of the chromosome and then
correct for that artifact. Theintensity information present in the
chromosome images was utilized in order to obtain improved
results for chromosomes with various staining methods. This
provides a basic framework for incorporating additional feature
into the standard L apl acian-based thickness measurement algo-
rithm. This paper extends our previous work [10] and provides
extensive statistical analysisto examine the performance of the
proposed method on chromosomes obtained through different
staining methods.

Il. METHOD

The following section will describe the proposed algorithm
for calculating the width profile of human metaphase chromo-
somes. This algorithm can be functionally categorized into four
tasks asfollows:

1) segmentation and contour extraction;

2) centerline extraction;

3) telomereshapeanalysisand correctionfor sister chromatid

separation; and

4) thickness measurement and centromere detection.

Chromosomes are first subjected to global thresholding and
gradient vector flow (GVF) [11] active contours for obtaining
an accurate outline of the chromosome boundary. This infor-
mation is utilized for width profile acquisition, and therefore,
the accurate representation of the chromosome outline isimpor-
tant. Then the centerline of the chromosome is extracted using
a discrete curve evolution (DCE)-based [12] skeleton pruning
algorithm. The proposed algorithm has the ability to detect sis-
ter chromatid separation by performing chromosome telomere
shape analysis through functional approximation. Thisinforma-
tion along with the centerline is effectively used as a method of
dissecting the chromosome into two approximately symmetric
contour segments. Next, the width profile of the chromosome
is calculated by creating a Laplacian vector field between the
two contour segments. We have modified the Laplacian vector
field further to include intensity information in addition to the
contour segments. By doing so, the vector field can be guided
using intensity localities within the chromosome. Therefore, the
integration of intensity aids in reducing the effects of boundary
noise on the width profile.
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Each of the aforementioned stepswill be discussed further in
the subsequent sections.

A. Sggmentation and Contour Extraction

The image preprocessing stage of the algorithm consisted of
intensity normalization followed by median filtering to suppress
noise while preserving edges.

The algorithm used for obtaining the segmentation and the
centerline of the chromosome (based on our previous approach
[4]) first obtains a binary output through global thresholding
using the Otsus method. A major issue in using a thresholding
technique such asthisistheneed to carefully select thethreshold
parameter to account for intensity differencesamongimages. To
overcomethis, we use the GVF active contour model [11] using
the outline from the thresholded image as the starting point.
This relieves us from having to adjust the threshold parameter
for each image and yields a smoother contour [4].

The main internal parameters of the GVF were set at o =
0.05 (elasticity factor), 5 = 0 (rigidity factor), u = 0.2 (GVF
regularization factor), and « = 2 (external force weight). This
set of values were obtained empirically and yielded satisfactory
segmentation results across the entire dataset.

B. Centerline Extraction

The centerline is a shape descriptor based on the topologi-
cal skeleton of the object, which produces a longitudinal axis
of symmetry. The chromosome centerline is necessary in many
operations like classification performed on segmented chromo-
somes[1], [13]. Many shape and structure-related features such
aschromosomal banding pattern, width, and density profilescan
be extracted using the centerline. Small deviationsin the extrac-
tion of these authentic features could result in classification
errors [14]. In the literature, media axis transformation (MAT)
has been commonly used to achievethis. In practice, using MAT
or other morphological operations such as object thinning tend
to produce poor results due to the shape variability of chromo-
somes. Such variations often yield spurious branches during the
skeletonization process. Hassouna and Farag have proposed a
method for obtaining a robust skeleton for 3-D objects using a
novel skeletonization algorithm which seemsto include built-in
pruning abilities [15] and clearly warrants future investigation.
However, in our approach, we have adopted a separate skeleton
pruning method based on DCE [12]. Thisalgorithm was sel ected
to obtain reliable centerline with prometaphase chromosomes
as well as chromosomes with sister chromatid separation. The
DCE algorithm evolves polygon partitions by vertex deletion
based on any given relevance measurement [16]. For the imple-
mentation, any digital image boundary can be approximated to a
polygon without aloss of information by taking each boundary
pixel as a vertex on the polygon and similarly considering the
distance between each pixel as an edge. DCE then evolves the
polygon iteratively by removing the vertex which had the least
value for the relevance value K (v, u, w) defined in (1), where
d., and d,,, arethe Euclidean lengths between the vertices and
0 isthe turn angle at vertex v. This relevance function was se-
lected so that it is dependent on features of its neighbors and,

Fig. 3. Comparison between standard skeleton and DCE-based solutionson a
bent chromosome. (a) Skeleton. (b) DCE triangle. (c) DCE pentagon.

thus, makes DCE able to evolve using global features of the
shape information. Since DCE issimply deleting vertices of the
polygon partitions, the topology information is guaranteed to be
preserved

K(v,u,w) = (0 x dyy * dy )/ (dup + dyw )- Q)

Fig. 3 depicts the reliability and accuracy of the DCE-based
pruning method compared to standard pruning. Fig. 3(b) and (c)
depicts two DCE-based pruning results for different number of
vertices for the end convex polygon.

In the case of obtaining the medial axis of achromosome, the
ideal result would be a pruned skeleton with no extra branches
(two vertices). Yet, as the minimum convex polygon being a
triangle and DCE being modeled as polygons, we have to set
the DCE toterminatewith threevertices. Therefore, theresulting
skeleton will a minimum have one spurious branch. Thisissue
was resolved by tracing al branches and pruning off the shortest
branch completely. The DCE result was then pruned by 10% of
the total skeletal length at each end in order to avoid effects of
skeletal bifurcation near telomere region. Next, the centerline
was sampled with a 7 pixel interval. The centerline ends were
recreated by extending the ends of the pruned centerline based
on the orientation of the extreme sample point pairs.

C. Correcting for Sster Chromatid Separation

Sister chromatid separation during cell preparation can ad-
versely affect the centromere detection process. The separation
can cause the centerline of the chromosome to traverse into one
of the sister chromatids and, therefore, yield false minima on
thewidth profile. In apreliminary study performed on detecting
66 centromere locations in Geimsa stained chromosomes (with
chromatid separation), 11 out of 13 false detections were due
to sister chromatid separation. In order to correct for this, the
sister chromatid separation has to be detected for each chromo-
some. We propose an automated contour partitioning and shape
analysis process for this task. The proposed algorithm will au-
tomatically partition and sample the telomere regions and | abel
accordingly to reflect presence of sister chromatid separation.

1) Contour Partitioning: One of theclear visual cuesfor de-
tecting telomere region is the high curvature of the object con-
tour inthevicinity of thetelomereregion. In oneattempt, Xuand
Kuipers proposed a method in which the contour was divided
a maximum-curvature points after tracing for curvature and
position continuity [17]. High curvature points in general tend
to mark salient points along a contour as a distinct visual cue.
Yet, high curvature points can also be introduced by boundary



Fig. 4. (a) Demonstration of an example of the telomere segment partitioning
where the red segments are the extracted telomere segments, while the yellow
squares are the six original DCE points. (b) Instance where correction for sister
chromatid separation is applied to the right-hand side telomere region (yellow
line) while retaining the origina line segment for the other telomere red line.
The sample points along the centerline are depicted by the blue squares. (c) and
(d) Depiction of the width profile sampling of the proposed method and our
previous approach [4], respectively.

noise in the segmentation result. The addition of unnecessary
contour segments can complicate the detection process. We have
identified the following asthree important conditionsin the par-
titioning algorithm:

1) The partitioning hasto include key visual cues or features

of the contour completely within each segment.

2) Partitioning resultsmust bereproducibleand less sensitive

to noise present in the contour.

3) The partitioning algorithm must be effective for all mor-

phologies of the object.

The DCE process used earlier for obtaining the centerline of
the chromosome satisfies all of the aforementioned conditions.
Therefore, the same algorithm was used for obtaining the salient
points related to the telomere region. Due to high morphol ogi-
cal changes in chromosomes, the highest four relevance points
[see (1)] may not capture (include) al telomere end points.
Therefore, the stopping criteriafor the DCE processwerealtered
to yield six salient locations (as opposed to the three vertices
polygon used in Section |1-B) along the object contour to reduce
the probability of missing true positives (see Fig. 4). Next, the
truetelomere end points (four points) are selected from these six
high relevance DCE points. The two centerline end points are a
subset of this set of candidate points. Therefore, telomere point
detection can be further simplified into a problem of selecting
two points out of four candidates, with respect to two known
telomere points. The selection criteria of the shortest distance
along object contour were observed to yield satisfactory resullts.
Once these four points are selected, the telomere regions can be
easily extracted along the object boundary.
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2) Shape Information Extraction: The partitioned telomere
curve segments carry information relating to the presence of sis-
ter chromatid separation. Traditionally, thisisachieved by incor-
porating high-level shapeinformation using aset of well-defined
features. These features should represent the shape characteris-
ticsof asister chromatid separated telomere curve segment. Yet,
defining such shapefeatures can be undesirable dueto following
reasons.

1) The classification results will be highly dependent and

limited by the set of features selected.

2) High variability of contour segment due to the amount of
chromatid separation and intensity fadingin betweenthose
sister chromatids would yield a large set of possibilities
for the telomere curve segments. This will increase the
difficulty in finding a suitable set of features.

3) Definingasignificant number of featuresandthentryingto
optimize aset of features using any technique such asPCA
isan added computational step. The proposed functional
approximation method includes this step inherently.

Therefore, we have used functional approximations for each
of the curve partitions and used their orthogonal basis coeffi-
cients as an alternative to various geometrical features. These
coefficients directly represent the shape information of the
telomere contour segment in each coordinate axis. The concept
of using orthogonal coefficients for matching shapes has been
used in the field of hand writing recognition with satisfactory
results [18], [19]. Therefore, we have adopted a similar ap-
proach for the telomere contour shape matching problem based
on deriving coefficients for Legendre polynomials.

In practice, it isnot possible to calculate al (infinite number)
coefficientsfor each coordinate axis. Therefore, empiricaly, we
have selected to calculate coefficients up to the order 10. The
lower order coefficientstend to give low-frequency information
while the higher order coefficients yield high-frequency wig-
gles. Therefore, for each segment, we calculate 20 coefficients
(20 coefficients for each coordinate axis). Next, a support vec-
tor machine (SVM) wastrained using 90 label ed set of telomere
coordinate curve segments [20]. With twofold cross validation,
the SVM achieved higher than 92% accuracy of classification.
When applied to the class of chromosome images with sister
chromatid separation, the extension of the sampled points was
altered to satisfy the coordinates of the telomere midpoint. This
correction is not meant to correct the centerline to reflect sym-
metry along the object longitudinal axis. Since the centerlineis
not directly used for getting the width profile, it is sufficient to
simply partition the contour of the chromosome symmetrically.

D. Laplacian-Based Thickness Measurement

L aplacian-based thickness measurement is an algorithm used
for cortical thickness measurements in a number of brain map-
ping applications [21], [22]. The Laplacian operator (A) yields
the divergence of the gradient of a function in the Euclidean
point space. This is written as follows, where 7 is the first
derivative or the differential operator in any given direction

Af =div(vf) =v.v /[ 2
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This operator is used to obtain the steady state of heat flow or
voltage distribution between two heated/charged contour seg-
ments in these applications. The vector field created at steady
state can be easily used to trace the thickness along the object
contour. Thismethod givesauniform sampling of thewidth pro-
file better than techniques based on the centerline. Yet, due to
the sole dependence on the contour information, the Laplacian-
based method can still be susceptibl e to contour noise embedded
during the segmentation stage. With different staining methods
and imaging conditions, the object boundary noise content may
vary significantly and in return will change the effectiveness of
this algorithm.

Since banding information present in chromosome texture is
visible with many staining methods and is in general oriented
normal to the object contour, it can be utilized for assisting the
thickness measurement process. Therefore, we have proposed a
novel algorithm to overcome the aforementioned limitation by
incorporating intensity information into static vector filed cal-
culation. This algorithm modifies the standard L aplacian-based
method by using a local weighting scheme based on image in-
tensity. The objective of thisisto guidethe Laplacian static field
across the breadth of the object, based on neighboring pixel in-
tensity values. The addition of this intensity information can
directly influence the accuracy of the thickness measurement
process and can be adjust for obtaining accurate centromere lo-
calization. Theintensity bias minimizes the effects of boundary
noise on the width profile.

The proposed thickness for measuring a gorithm requires the
following information as inputs to the system:

1) The single-pixel wide contour of the sesgmented object of

interest.

2) A separation of the object contour using the longitudinal
axis of symmetry of the object. Correcting this for sister
chromatid separation was performed through the shape
analysis process.

The Laplacian static vector field-based thickness calculation
method guides a set of high-potential contour points toward
their unique closest set of points on the other contour [23]. The
following description of intensity integrationisreproduced from
our previous work [10] for better readability.

Theintensity information in the proposed method was simply
used to bias the field toward the desired intensity pattern. This
was achieved by using the weighting scheme described |ater.

Given the intensity image (1) which contains the object of
interest, atotal of eight matrices (digital images) were created
based on connectivity and directional intensity gradients with
identical dimensionsto I asfollows:

Vi) = absiI(w,y) — I(z + iy — j)]
(Zvj) - {Zvj € (71,0, 1)7 (’L?]) 7& (0’0)} (3)

For simplicity and clarity, remaining steps will be described
using the generic term VIL j)- Next, al the matrices were nor-
malized to the interval (0, 1), using the maximum absolute
intensity difference in that direction [refer (4)]. Then, the ma-
trix values were inverted within the same range of (0, 1) by
subtracting each matrix value from 1. The matrix Vf(,;.j) will

TABLEI
KERNEL THAT INTEGRATES INTENSITY INFORMATION INTO THE LAPLACIAN
CALCULATION FOR LOCATION (z, y)

_Vf(flil)(x)y) _Vf(ﬂ,l)(zvy> _Vf(l‘l)(may)
8 8 8

vI_ (z,y) VI (z,y)
_ (—1,0) _ {1,0)
8 +1 8

_Vf(71;71)($7l/) _Vf((),—l)(r:y) _Vf(1;71)($7y)
8 8 8

now yield values close to unity where intensity level in the
neighborhood is similar. Similarly, this will also give smaller
values (close to 0) for pixels with high-intensity gradients. To
address cases, where intensity patches are parallel to the object
contour, the proposed agorithm is modified by simply remov-
ing the inverting step for all eight matrices. By doing so, the
weighting factors will bias toward higher intensity differences
instead of homogenous regions

Vi gy = —td) @

max(V1 ;)

The intensity-based weighting matrices were then rescaled
according to (5), where b isascalar value between (0, 1) which
will be referred to as the “ control variable” henceforth. There-
fore, the values in the weighting matrix Vf(i,j) will vary in the
interval of (b, 1)

Vf(zxj) = Vf(m) % (1 —b) + 0. (5)

The purpose of the control variable b isto scale or control the
influence from the intensity variation onto the standard Lapla-
cian calculation. A lower value for b will increase the influence
of theintensity information and vice versa. Therefore, avalue of
1 for the control variable will calculate the standard Laplacian
vector field with no influence from the intensity values. This
value has to be set based on how prominent and consistent the
intensity patterns are in a given image. The practical range of
values would lie between the limited range of (0.7, 1) for this
experiment. Empirically, the control variable b was set to 0.9 for
all our experiments.

Once these sets of intensity weighting factor matrices are cal-
culated, those values can be directly used to change the way the
Laplacian static field is calculated at each iteration. Therefore,
instead of the standard Laplacian kernel, we propose to use the
kernel given by Tablel, whichisnow defined for each (z, y) co-
ordinate location in the image. Therefore, now we have a static
vector field generation process that includes both nonuniform
and local shape features depending on the intensity variation in
the region and the control variable b which controls the amount
of biasing. This approach provides the ability for each pixel to
affect the neighboring pixels based on the intensity similarity
or difference between them. It is also important to realize that
these weight matrices are static in nature and do not change with



Fig. 5. (a) Demonstration of the difference between the kernel of the pro-
posed method and the standard Laplacian kernel. (b) Enlarged view of the
3 x 3 neighborhood of the pixel location marked by yellow in (a). (c) and
(d) Representation of one the standard Laplacian and intensity biased Laplacian
kernels calculated for the neighborhood of interest.

each iteration. Therefore, the proposed algorithm is comparable
with the standard L aplacian calculations in computational cost.

Fig. 5 depicts the difference between the standard Laplacian
kernel and (oneinstance of) the proposed intensity-based L apla-
cian kernel. The instance of the proposed kernel [see Fig. 5(d)]
clearly depicts the biasing of the Laplacian field in directions
where similar intensities are present.

Next, the gradients at each pixel location () were calcu-
lated along the two major axes (x and y) using neighborhood
pixel values as given below where B(z,y) is the steady-state
Laplacian image

O(z,y) _ (Bx+Az,y) - Bz — Az,y))
Ax 2

(I)($7y) — (B(x,y + Ay) — B(.’L‘,y — Ay)) (6)
Ay 2 '

Then, each of these gradient components was normalized and
stored in matrices IV, and N, using the magnitude of the vector
at each pixel. The matrices N, and N, contain the intensity
biased Laplacian static field vector components for the x- and
y-axis directions.

Once the proposed intensity integrated Laplacian static field
is derived, the corresponding contour points and the distance
between them have to be calculated. The same thickness mea-
sures can be obtained by using starting points from either con-
tour segments or even the centerline points of the chromosome.
Euler’'s method was used for the aforementioned task. Thisisa
simple and yet effective way of traversing through avector field
as given by (7), based on the local vector field direction and
magnitude. For implementation, the direction of traverse hasto
be adjusted (by flipping the polarity of the vector field when
necessary) in order to make sure that the thickness is measured
within the chromosome body

T, =x+ Ax
Yn =y +y Az, (7
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Fig. 6. Steps of tracing the thickness (yellow stars) at one contour location
of the chromosome where the arrows indicate the Laplacian vector field. The
black square indicates the starting point on the contour of the object. The final
thickness value is calculated by getting the sum of al the lengths of these small

steps.

First, the gradient values at each pixel location (V) is cal-
culated using each tangent vector component (V,, and N,) as
given by

U(z,y) =y (z,y) = Ny(z,y)/Na (2, ). (8

Computation of the thickness involves the following iterative
process using Euler’s method for each high-potential contour
point:

1) Based on the local direction of the vector field gradient

(W(x,y)), select the direction (axis) for incrementing.

2) Apply Euler's equation and calculate the new pixel loca-
tion along the direction of the vector field.

3) Calculate the Euclidean distance between the new and
current location and accumulate with the current total
distance.

4) If the new location is within the object of interest, start
from the first step onward. Once the calculated location
placed outside the object, the algorithm will move to the
next contour point.

The collection of these accumulated Euclidean length values

is considered as the thickness/width profile of that object. Fig. 6
depictsthe steps of tracing the thickness at one contour location
of the chromosome. In order to avoid incorporating the telomere
region width measurements, the profile was pruned on either
side by 10% (selected empirically) of the total number of points
on the contour segment. This reduces the chance of detecting a
telomere of a chromosome as a centromere location.

IIl. RESULTS

The centromere and centerline detection method described
by Arachchige et al. [4], [6] was used for comparing the results
of the proposed method. The centerline-based method was se-
lected sinceit can handle any chromosome morphol ogy without
yielding spurious branchesin the centerline and al so attemptsto
find the width profile similar in principle to most existing meth-
ods. The centromere location manually recorded by an expert
was used as the “gold standard” in the analysis. The analysis
of intraobserver variability of ground truth was not attempted at
thistime due to limitations in resources. Since the chromosome
centromere is a region as opposed to a single location, the ex-
pert was instructed to draw aline across the centromere region.
Then, the perpendicular distance in pixels from the centromere
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TABLE I
BREAKDOWN OF CHROMOSOME CELL IMAGES AND CHROMOSOMES BASED ON
THE STAINING METHOD AND THE SISTER CHROMATID SEPARATION (SC SEP)

[ Abbr. | Label | Images | Chromosomes
D-NSC DAPI-No SC Sep. 4 72
D-WSC DAPI-With SC Sep. 3 59
G-WSC | Geimsa-With SC Sep. 5 95

Total 12 226

location given by the algorithm (midpoint of the scan line with
the minimum width) to the user drawn line segment is denoted
asthe error of detection. In this study, we are more interested in
errorsin the vicinity of the center of the chromosome rather the
orientation of the scan line. Therefore, the experiment was set
up in away that any displacement of the detected centromere
location aong the drawn ground truth centromere line would
not influence the accuracy of detection. Furthermore, we have
not normalized pixel error values since the centromere struc-
ture mostly remains fixed despite chromosome morphology or
chromosome number. These error values will be denoted by £,
and E for the error of the Laplacian-based proposed method
centromere and the centerline method result, respectively, and
will be referred here after. The following section will provide
an in-depth analysis of the preliminary results provided in our
previous work [10].

A total of 226 human lymphocyte chromosomes from 12
chromosome cells were randomly selected for the study given
that they have no overlaps or touches with neighboring chro-
mosomes. Table Il provides the breakdown of these cell images
based on the staining method as well as the presence of sister
chromatid separation (judged visually).

The algorithm performs well on chromosomes regardless of
the staining method and the shape of the chromosome. Yet,
the algorithm can fail in the presence of high sister chromatid
separation in the binary segmentation of the chromosome. The
DCE algorithminthe contour partitioning algorithm can select a
high curvature point within the telomeric region and, thus, yield
the correction for sister chromatid separation ineffective. Fig. 7
shows some of the sample results for multiple staining methods
used commonly in cytogenetic studies and analysis. Fig. 7(f)
depicts an instance where the correction for sister chromatid
separation has failed to yield the expected result. In Fig. 7(e),
we have presented a case where the centerline-based method has
failed toyield an accurate centromerelocation. Thisiscaused by
anoisy centerline which misses the actual width constriction at
the centromere location. But the proposed method yields better
results due to uniform sampling despite object boundary noise
[see Fig. 4(d)].

A. Satistical Analysis

A preliminary analysis of the two data distributions was per-
formed using the summary of the error metric values (in units
of pixels) obtained for the dataset (see Table I11) [10]. The pro-
posed algorithm yields a smaller error mean value while main-
taining a smaller standard error of mean. This observation is
further supported by the skewness and kurtosis val ues obtained
for the proposed method as opposed to the centerline method.

Fig. 7. (a) Demonstration of some sample results of the algorithm where
the detected centromere location is depicted in ared color circle against our
previous approach [4] in a blue color star, while the expert-drawn centromere
line is depicted in white. (a) and (b) Results of DAPI stained chromosomes;
(c)—f) results of Geimsa stained chromosomes. (€) Instance in which the pro-
posed algorithm has outperformed the state of the art significantly; (f) instance
in which the proposed agorithm has failed to yield the accurate centromere
location due to high degree of sister chromatid separation.

TABLE Il
DESCRIPTIVE VALUES FOR THE DETECTION ERROR DATASET WHEN ANALYZED
WITH THE PROPOSED LAPLACIAN-BASED METHOD (E},) AND
CENTERLINE-BASED METHOD (E) [4] (REPRODUCED FROM THE PREVIOUS

WOoRK [10])
N Mean Kurt- Skew-
Stat. Std. Error -8is -ness
E;r 226 | 4.0243 4535 17.859 | 3.839
E¢ 226 | 8.7819 7749 2.657 1.834

The higher kurtosis value suggests a tight clustering of error
values around the peak while the higher skewness depicts an
asymmetric distribution biased toward lower error value.

Since the same set of chromosomes were used to analyze the
results of both algorithms, this experiment falls under the cate-
gory of repeated measurement analysis. Therefore, a“t statistic”
cannot be utilized to obtain the significance of theresults. There-
fore, the datadistribution was then checked for normality within
each category using the Kolmogorov—Smirnova normality test.
Thetest proved that we can reject the null hypothesis (p < 0.05)
that the distributions are normal (test statistics for £, = 0.28
and E¢ = 0.25). This deviation from normality is further sup-
ported by the high skewness and kurtosis values (see Table l11).
This provides evidence toward the conclusion that the proposed
method yieldsabetter grouped distribution toward alower mean
error value when compared to the centerline method.

The significance of these finding was explored using the
“Wilcoxon signed rank test” which can be directly applied to
repeated measurements without the normality constraint. The
results of thistest are givenin Table 1V.

The datain Table 1V analyze cases based on their signs after
comparing each corresponding pair. Therefore, it can be ob-
served that the sum of positive ranksis significantly higher than
that for negative ranks. This corresponds to the cases in which



TABLE IV
WILCOXON SIGNED TEST RANK ANALYSIS RESULTS
N Mean Sum of
Rank Ranks
(-) Ranks 80 89.74 7179.00
E¢c - Ep, | (+) Ranks 146 | 126.52 | 18472.00
Ties 0
Total 226

Fig. 8. Scatter plots for demonstrating the correlation between the two de-
tection error distributions in which the “x” axis is the detection error of the
proposed L aplacian-based method (£, ) and the“y” axisisthe centerline-based
method (E¢).

the Laplacian-based proposed method yields lower error values
compared to our previous approach.

Based on this analysis, we conclude that the proposed
L aplacian-based method elicits statistically significant improve-
ment in centromere localization (Z = —5.738, p < 0.05) com-
pared to the centerline-based method.

The Games-Howell post hoc test was selected to analyze
variability of error measurements between the threelabelsgiven
in Tablell for the proposed method sincethe L evene test proved
that the null hypothesis of equal variance can be rejected (test
statisticsfor £, = 9.763 and B = 23.362).

The post hoc analysis demonstrates that the performance of
the proposed method varies significantly (p(= 0.016) < 0.05)
only between D-NSC (DAPI without SC Sep.) and G-WSC
(Geimsa stained). In the meantime, the results of the centerline-
based method vary significantly (p(= 0.000) < 0.05) between
groups D-NSC (DAPI without SC Sep.) and G-WSC (Geimsa
stained) as well as groups D-NSC (DAPI without SC Sep.) and
D-WSC (DAPI with SC Sep.) (p(= 0.001) < 0.05). Thisshows
that the proposed method varies less in performance based on
the image group type in comparison to the centerline-based
method. The caseswith visible sister chromatid separation were
also handled better through the proposed method compared to
the centerline-based method.

The scatter plot shown in Fig. 8 showsthe correlation of mea-
surement error between the two methods. The outliers of the
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error values (a common shortcoming shared by the proposed
and prior approaches) are observed to be contributed by the
inaccuracy of the contour partitioning and correcting for sister
chromatid separation. The same phenomenon was observed be-
tween the error valuesfor the proposed method with and without
integrating intensity information. A nonparametric correlation
test using the Spearman coefficient revealed astrong correlation
between the error values obtained through both these methods
(pcx,v) = 0.250). The clustering of data points in Fig. 8 cor-
responds to the majority of this correlation measurements been
significant.

To study the benefit of the proposed a gorithm, we examined
11 chromosomes from the dataset which had the most positive
impact from the addition of intensity into the algorithm. They
showed animprovement of error by 20.9 pixelsin average. From
this set of chromosomes, three were affected by the presence of
high degree of sister chromatid separation. The chromosomes
that were not affected by this phenomenon showed the presence
of alighter intensity band close to the centromere location. The
proposed method has guided the thickness measuring process
more accurately by retaining the scan line within this intensity
band. On the other hand, only four chromosomes were present
in the dataset with a considerable negative bias (average of 26.4
pixelsinerror). A close examination of these four chromosomes
revealed the presence of high degree of sister chromatid sepa-
ration. We observed that such separation tends to increase the
error of centromere detection. Conversely, improved contour
partitioning which correctly recognizes sister chromatid separa-
tion will result in the proposed integration of intensity onto the
Laplacian framework yield better accuracy.

IV. CONCLUSION

We have presented a novel intensity integrated Laplacian-
based method for detecting centromere locations in human
metaphase chromosomes more accurately. The statistical anal-
ysis demonstrated significant improvement in the accuracy of
centromere localization through the proposed method in com-
parison to a centerline-based method [4]. We have presented a
framework for incorporating additional featuresinto the Lapla-
cian thickness measurement process and have demonstrated us-
ing the intensity feature. We will further explore other possible
features such as boundary concavity which can aid the detection
of centromere locations as well as other similar measurement
problems. Furthermore, an improvement in the accuracy detect-
ing boundary salient pointsfor contour partitioning canincrease
the accuracy of the proposed algorithm significantly. Further
analysis is required including various other existing staining
methods to test the performance of the proposed a gorithm. We
also need to exploreinter- and intraobserver variability in man-
ually detecting centromere locations. In addition, we plan to
further devel op the algorithm to detect dicentric chromosomes.

The proposed method requires 3.85 s per chromosome using
MATLAB on an Intel core i5 3.30-GHz processor. Although
this is noticeably slower than our previous approach (0.91 s
per chromosome), we opted to sacrifice the loss of speed for
a substantial gain in accuracy. The main factor for increased
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computational burden was observed to betheiterative Laplacian
field calculation. We are currently exploring methods for paral-
lelizing the proposed method and effectively reducing the pro-
cessing time.
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Intensity Integrated L aplacian-Based Thickness
Measurement for Detecting Human Metaphase
Chromosome Centromere L ocation

Akila Subasinghe Arachchige®, Jagath Samarabandu, Joan H. M. Knoll, and Peter K. Rogan

Abstract—Accurate detection of the human metaphase chro-
mosome centromere is an important step in many chromosome
analysis and medical diagnosis algorithms. The centromere loca-
tion can be utilized to derive information such as the chromosome
type, polarity assignment, etc. Methods available in the literature
yield unreliable results mainly due to high variability of morphol-
ogy in metaphase chromosomes and boundary noise present in the
image. In this paper, we have proposed a multistaged algorithm
which includes the use of discrete curve evolution, gradient vector
flow active contours, functional approximation of curve segments,
and support vector machine classification. The standard Laplacian
thickness measurement algorithm was enhanced to incorporate
both contour information as well as intensity information to obtain
a more accurate centromere location. In addition to segmentation
and width profile measurement, the proposed algorithm can also
correct for sister chromatid separation in cell images. The pro-
posed method was observed to be more accurate and statistically
significant as compared to a centerline-based method when tested
with 226 human metaphase chromosomes.

Index Terms—Centromere detection, chromosome analysis,
Laplacian-based thickness measurement.

|. INTRODUCTION

HE centromere can be used in identifying the chromosome
T type, number, and also in diagnostic processes such as the
chromosome dicentric assay (see Fig. 1). The centromere is
characterized by a constriction of the width of the chromosome.
Detecting the human metaphase centromere location presents
unique challenges.
The morphology and lengths of chromosomes can vary sig-
nificantly between different growth conditions and cytogenetic
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Fig. 1. Sample graphical representation of a human metaphase chromosome
with key components and regions labeled for reference.

Fig. 2. Depiction of various degrees of sister chromatid separation present in
some Geimsa stained chromosome cell images from a radiation biodosimetry
laboratory (aand b) aswell as some lengthy chromosomes characteristic to ones
prepared at aclinical cytogenetic laboratory (c and d) which are prepared with
small, but significant differencesin the laboratory cell preparation procedures.

preparations. Detection of subtle structural chromosome abnor-
malities at high resolution requires methods (such as addition
of DNA intercalating agents, reduced exposure to colcemid,
cell cycle synchronization, 3—4 day lymphocyte culture) that
reduce chromosome condensation or arrest chromosomes at
prometaphase. Numerical chromosome abnormalities or low-
frequency large structural acquired abnormalities(e.g., dicentric
chromosomes) present in cancer or biodosimetry samplescan be
processed with methods (such as prolonged colcemid time and
concentration; two days cell culture) that increase the number
of cellsin metaphase but result in shorter chromosome lengths.
Shorter, more condensed chromosomes often have separated or
distinct sister chromatids on each arm and fewer chromosomal
bands (see Fig. 2).

The width constriction on higher banded chromosomes can
be missed easily due to bends or noise on the chromosome
boundary, while chromosomes with sister chromatid separation
tend to mislead the width profile calculation near the telomeric
region. This constriction can be identified using the chromo-
some width profile which can be defined as the sequential width
measurements along the centerline or the axis of symmetry of
the chromosome.

From an image analysis point of view, metaphase chro-
mosomes pose numerous challenges. Morphological variabil-
ity caused by nonrigid chromosome structures is one promi-
nent factor. Furthermore, the stage of mitosis (cell division
cycle) at which the cells were arrested and the microtubule

0018-9294/$31.00 © 2013 IEEE



polymerization inhibitors significantly affect chromosome ap-
pearance. These factors, which can dictate the presence and
the degree of sister chromatid separation as well as the length
and width of chromosomes in that cell, are usually standard-
ized within but not necessarily between laboratories. Therefore,
effective chromosome image processing techniques must ac-
curately account for these sources of variability in detecting
cardinal features, such as centromeres, in order to distinguish
different chromosomes from one another and from abnormali-
ties. Fig. 2 depicts a sample of chromosomes with high shape
variability.

Published methods for centromere identification can be in-
consistent due to variable morphologies and boundary noise
present in images of metaphase chromosomes. Chromosome
segmentation methods for centromere identification are funda-
mentally distinguished as either centerline-based methods or
methods based on other features.

A. Centerline-Based Methods

Many published algorithms attempt to detect the centromere
location by detecting the constriction along the centerline of the
chromosome. Although Piper and Granum [1] approached this
by taking the second moment along the centerline, a common
approach is to calculate feature profiles along scan lines per-
pendicular to the centerline [2]. In a similar approach, Wang
et al. used these scan lines or trellis structures which are per-
pendicular to the centerline of the chromosome to extract the
shape profile, the width profile (collection of width measure-
ments), and the banding patterns of chromosomes[3]. All these
methods are proneto having spurious branchesin the centerline.
We previously proposed an algorithm to overcome this problem
and yield a reliable centerline [4]. Yet this method could also
give false positives as noise on the centerline (introduced by a
noisy object boundary) can result in the scan lines missing the
actual constriction at the centromere location. Mohammead [5]
used the centerline (using our previous approach [6]) to detect
the centromere | ocations which were derived using the degree of
concavity of the object boundary whichisascalevariant feature.
However, this method al so suffers from boundary noisein chro-
mosome cell images which are reflected both on the centerline
as well as on the concavity measuring algorithm. Furthermore,
the presence of high degree of sister chromatid separation can
also introduce error into the centerline detection as well as to
the centromere localization.

B. Methods Based on Other Features

Some of the methods in the literature do not use the cen-
terline for localizing the centromere location. Mousavi and
Ward assigned a membership value for each pixel of DAPI
(4',6-diamidino-2-phenylindole) and FITC (fluorescein isothio-
cyanate) images (with centromere probes) based on an iterative
fuzzy agorithm [7]. Yet, this method has limited scope of ap-
plication as it depends on special specimen preparation and
information in the form of centromere probes and FITC im-
ages. Moradi et al. [8] and Faria et al. [9] took the horizontal
and vertical projection vectors of the binary segmented chro-
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mosomes. These projection vectors were obtained by summing
up the number of object pixels in the binary segmented image
in each horizontal and vertical directions and the centromere
was located by finding the global minimum in these vectors.
Chromosomes with a bend greater than 90° as well as acrocen-
tric chromosomes could not be handled accurately using this
method.

Despite the fact that centerline-based methods perform bet-
ter than their counterpart, these approaches are still susceptible
to errors introduced by noisy object boundaries. Therefore, we
have proposed to utilize the centerline of achromosome not asa
means of deriving the scan lines (trellisstructure), but for merely
dividing the chromosome into two symmetric partitions. This
proposed algorithm can automatically detect sister chromatid
separation near the telomere region of the chromosome and then
correct for that artifact. Theintensity information present in the
chromosome images was utilized in order to obtain improved
results for chromosomes with various staining methods. This
provides a basic framework for incorporating additional feature
into the standard L aplacian-based thickness measurement algo-
rithm. This paper extends our previous work [10] and provides
extensive statistical analysis to examine the performance of the
proposed method on chromosomes obtained through different
staining methods.

Il. METHOD

The following section will describe the proposed algorithm
for calculating the width profile of human metaphase chromo-
somes. This algorithm can be functionally categorized into four
tasks asfollows:

1) segmentation and contour extraction;

2) centerline extraction;

3) telomereshapeanalysisand correctionfor sister chromatid

separation; and

4) thickness measurement and centromere detection.

Chromosomes are first subjected to global thresholding and
gradient vector flow (GVF) [11] active contours for obtaining
an accurate outline of the chromosome boundary. This infor-
mation is utilized for width profile acquisition, and therefore,
the accurate representation of the chromosome outline isimpor-
tant. Then the centerline of the chromosome is extracted using
a discrete curve evolution (DCE)-based [12] skeleton pruning
algorithm. The proposed algorithm has the ability to detect sis-
ter chromatid separation by performing chromosome telomere
shape analysis through functional approximation. Thisinforma-
tion along with the centerline is effectively used as a method of
dissecting the chromosome into two approximately symmetric
contour segments. Next, the width profile of the chromosome
is calculated by creating a Laplacian vector field between the
two contour segments. We have modified the Laplacian vector
field further to include intensity information in addition to the
contour segments. By doing so, the vector field can be guided
using intensity localities within the chromosome. Therefore, the
integration of intensity aids in reducing the effects of boundary
noise on the width profile.
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Each of the aforementioned steps will be discussed further in
the subsequent sections.

A. Segmentation and Contour Extraction

The image preprocessing stage of the algorithm consisted of
intensity normalization followed by median filtering to suppress
noise while preserving edges.

The algorithm used for obtaining the segmentation and the
centerline of the chromosome (based on our previous approach
[4]) first obtains a binary output through global thresholding
using the Otsus method. A major issue in using a thresholding
technique such asthisistheneed to carefully select thethreshold
parameter to account for intensity differencesamong images. To
overcomethis, we use the GV F active contour model [11] using
the outline from the thresholded image as the starting point.
This relieves us from having to adjust the threshold parameter
for each image and yields a smoother contour [4].

The main internal parameters of the GVF were set at o =
0.05 (elasticity factor), 8 = 0 (rigidity factor), u = 0.2 (GVF
regularization factor), and x = 2 (external force weight). This
set of values were obtained empirically and yielded satisfactory
segmentation results across the entire dataset.

B. Centerline Extraction

The centerline is a shape descriptor based on the topologi-
cal skeleton of the object, which produces a longitudinal axis
of symmetry. The chromosome centerline is necessary in many
operations like classification performed on segmented chromo-
somes[1], [13]. Many shape and structure-related features such
aschromosomal banding pattern, width, and density profilescan
be extracted using the centerline. Small deviationsin the extrac-
tion of these authentic features could result in classification
errors[14]. In the literature, medial axis transformation (MAT)
has been commonly used to achievethis. In practice, using MAT
or other morphological operations such as object thinning tend
to produce poor results due to the shape variability of chromo-
somes. Such variations often yield spurious branches during the
skeletonization process. Hassouna and Farag have proposed a
method for obtaining a robust skeleton for 3-D objects using a
novel skeletonization algorithm which seemsto include built-in
pruning abilities [15] and clearly warrants future investigation.
However, in our approach, we have adopted a separate skeleton
pruning method based on DCE [12]. Thisalgorithm was sel ected
to obtain reliable centerline with prometaphase chromosomes
as well as chromosomes with sister chromatid separation. The
DCE agorithm evolves polygon partitions by vertex deletion
based on any given relevance measurement [16]. For the imple-
mentation, any digital image boundary can be approximated to a
polygon without aloss of information by taking each boundary
pixel as a vertex on the polygon and similarly considering the
distance between each pixel as an edge. DCE then evolves the
polygon iteratively by removing the vertex which had the least
value for the relevance value K (v, u, w) defined in (1), where
d., and d,,, arethe Euclidean lengths between the vertices and
f isthe turn angle at vertex v. This relevance function was se-
lected so that it is dependent on features of its neighbors and,

Fig. 3. Comparison between standard skeleton and DCE-based solutionson a
bent chromosome. (a) Skeleton. (b) DCE triangle. (c) DCE pentagon.

thus, makes DCE able to evolve using global features of the
shapeinformation. Since DCE issimply deleting vertices of the
polygon partitions, the topol ogy information is guaranteed to be
preserved

K(v,u,w) = (0 x dyy * dyw )/ (dup + dyw )- Q)

Fig. 3 depicts the reliability and accuracy of the DCE-based
pruning method compared to standard pruning. Fig. 3(b) and (c)
depicts two DCE-based pruning results for different number of
vertices for the end convex polygon.

In the case of obtaining the medial axis of achromosome, the
ideal result would be a pruned skeleton with no extra branches
(two vertices). Yet, as the minimum convex polygon being a
triangle and DCE being modeled as polygons, we have to set
the DCE toterminatewith threevertices. Therefore, theresulting
skeleton will at minimum have one spurious branch. Thisissue
was resolved by tracing al branches and pruning off the shortest
branch completely. The DCE result was then pruned by 10% of
the total skeletal length at each end in order to avoid effects of
skeletal bifurcation near telomere region. Next, the centerline
was sampled with a 7 pixel interval. The centerline ends were
recreated by extending the ends of the pruned centerline based
on the orientation of the extreme sample point pairs.

C. Correcting for Sster Chromatid Separation

Sister chromatid separation during cell preparation can ad-
versely affect the centromere detection process. The separation
can cause the centerline of the chromosome to traverse into one
of the sister chromatids and, therefore, yield false minima on
the width profile. Inapreliminary study performed on detecting
66 centromere locations in Geimsa stained chromosomes (with
chromatid separation), 11 out of 13 false detections were due
to sister chromatid separation. In order to correct for this, the
sister chromatid separation has to be detected for each chromo-
some. We propose an automated contour partitioning and shape
analysis process for this task. The proposed algorithm will au-
tomatically partition and sample the telomere regions and | abel
accordingly to reflect presence of sister chromatid separation.

1) Contour Partitioning: One of theclear visual cuesfor de-
tecting telomere region is the high curvature of the object con-
tour inthevicinity of thetelomereregion. In oneattempt, Xu and
Kuipers proposed a method in which the contour was divided
at maximum-curvature points after tracing for curvature and
position continuity [17]. High curvature points in general tend
to mark salient points along a contour as a distinct visual cue.
Yet, high curvature points can also be introduced by boundary



Fig. 4. (a) Demonstration of an example of the telomere segment partitioning
where the red segments are the extracted telomere segments, while the yellow
squares are the six original DCE points. (b) Instance where correction for sister
chromatid separation is applied to the right-hand side telomere region (yellow
line) while retaining the origina line segment for the other telomere red line.
The sample points along the centerline are depicted by the blue squares. (c) and
(d) Depiction of the width profile sampling of the proposed method and our
previous approach [4], respectively.

noise in the segmentation result. The addition of unnecessary
contour segments can complicate the detection process. We have
identified the following asthree important conditionsin the par-
titioning algorithm:

1) The partitioning hasto include key visual cuesor features

of the contour completely within each segment.

2) Partitioning resultsmust bereproducibleand lesssensitive

to noise present in the contour.

3) The partitioning algorithm must be effective for all mor-

phologies of the object.

The DCE process used earlier for obtaining the centerline of
the chromosome satisfies all of the aforementioned conditions.
Therefore, the same algorithm was used for obtaining the salient
points related to the telomere region. Due to high morphologi-
cal changes in chromosomes, the highest four relevance points
[see (1)] may not capture (include) al telomere end points.
Therefore, the stopping criteriafor the DCE processwereatered
to yield six salient locations (as opposed to the three vertices
polygon used in Section I1-B) along the object contour to reduce
the probability of missing true positives (see Fig. 4). Next, the
truetelomere end points (four points) are selected from these six
high relevance DCE points. The two centerline end points are a
subset of this set of candidate points. Therefore, telomere point
detection can be further simplified into a problem of selecting
two points out of four candidates, with respect to two known
telomere points. The selection criteria of the shortest distance
along object contour were observed to yield satisfactory resullts.
Oncethese four points are selected, the telomere regions can be
easily extracted along the object boundary.
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2) Shape Information Extraction: The partitioned telomere
curve segments carry information relating to the presence of sis-
ter chromatid separation. Traditionally, thisisachieved by incor-
porating high-level shapeinformation using aset of well-defined
features. These features should represent the shape characteris-
ticsof asister chromatid separated tel omere curve segment. Yet,
defining such shape features can be undesirable dueto following
reasons.

1) The classification results will be highly dependent and

limited by the set of features selected.

2) High variability of contour segment due to the amount of
chromatid separation and intensity fadingin betweenthose
sister chromatids would yield a large set of possibilities
for the telomere curve segments. This will increase the
difficulty in finding a suitable set of features.

3) Definingasignificant number of featuresand thentryingto
optimize aset of features using any technique such asPCA
isan added computational step. The proposed functional
approximation method includes this step inherently.

Therefore, we have used functional approximations for each
of the curve partitions and used their orthogonal basis coeffi-
cients as an alternative to various geometrical features. These
coefficients directly represent the shape information of the
telomere contour segment in each coordinate axis. The concept
of using orthogonal coefficients for matching shapes has been
used in the field of hand writing recognition with satisfactory
results [18], [19]. Therefore, we have adopted a similar ap-
proach for the telomere contour shape matching problem based
on deriving coefficients for Legendre polynomials.

In practice, it isnot possible to calculate al (infinite number)
coefficientsfor each coordinate axis. Therefore, empiricaly, we
have selected to calculate coefficients up to the order 10. The
lower order coefficientstend to give low-frequency information
while the higher order coefficients yield high-frequency wig-
gles. Therefore, for each segment, we calculate 20 coefficients
(20 coefficients for each coordinate axis). Next, a support vec-
tor machine (SVM) wastrained using 90 |abeled set of telomere
coordinate curve segments [20]. With twofold cross validation,
the SVM achieved higher than 92% accuracy of classification.
When applied to the class of chromosome images with sister
chromatid separation, the extension of the sampled points was
altered to satisfy the coordinates of the telomere midpoint. This
correction is not meant to correct the centerline to reflect sym-
metry along the object longitudinal axis. Since the centerlineis
not directly used for getting the width profile, it is sufficient to
simply partition the contour of the chromosome symmetrically.

D. Laplacian-Based Thickness Measurement

L aplacian-based thickness measurement is an algorithm used
for cortical thickness measurements in a number of brain map-
ping applications [21], [22]. The Laplacian operator (A) yields
the divergence of the gradient of a function in the Euclidean
point space. This is written as follows, where </ is the first
derivative or the differential operator in any given direction

Af =div(vf) =v.v /[ @)
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Thisoperator is used to obtain the steady state of heat flow or
voltage distribution between two heated/charged contour seg-
ments in these applications. The vector field created at steady
state can be easily used to trace the thickness along the object
contour. Thismethod givesauniform sampling of thewidth pro-
file better than techniques based on the centerline. Yet, due to
the sole dependence on the contour information, the Laplacian-
based method can still be susceptibleto contour noise embedded
during the segmentation stage. With different staining methods
and imaging conditions, the object boundary noise content may
vary significantly and in return will change the effectiveness of
this algorithm.

Since banding information present in chromosome texture is
visible with many staining methods and is in general oriented
normal to the object contour, it can be utilized for assisting the
thickness measurement process. Therefore, we have proposed a
novel algorithm to overcome the aforementioned limitation by
incorporating intensity information into static vector filed cal-
culation. This agorithm modifies the standard L aplacian-based
method by using a local weighting scheme based on image in-
tensity. The objective of thisisto guidethe Laplacian static field
across the breadth of the object, based on neighboring pixel in-
tensity values. The addition of this intensity information can
directly influence the accuracy of the thickness measurement
process and can be adjust for obtaining accurate centromere | o-
calization. Theintensity bias minimizes the effects of boundary
noise on the width profile.

The proposed thickness for measuring a gorithm requires the
following information as inputs to the system:

1) The single-pixel wide contour of the segmented object of

interest.

2) A separation of the object contour using the longitudinal
axis of symmetry of the object. Correcting this for sister
chromatid separation was performed through the shape
analysis process.

The Laplacian static vector field-based thickness calculation
method guides a set of high-potential contour points toward
their unique closest set of points on the other contour [23]. The
following description of intensity integrationisreproduced from
our previous work [10] for better readability.

Theintensity information in the proposed method was simply
used to bias the field toward the desired intensity pattern. This
was achieved by using the weighting scheme described |ater.

Given the intensity image (1) which contains the object of
interest, atotal of eight matrices (digital images) were created
based on connectivity and directional intensity gradients with
identical dimensionsto I asfollows:

Vi) = absll(z,y) = I(x +i,y - j)]
(i,j):{i,je(—1,0,1),(7:,]‘)7&(0,0)}‘ (3)

For simplicity and clarity, remaining steps will be described
using the generic term VI?L j)- Next, al the matrices were nor-
malized to the interval (0, 1), using the maximum absolute
intensity difference in that direction [refer (4)]. Then, the ma-
trix values were inverted within the same range of (0, 1) by
subtracting each matrix value from 1. The matrix V1, ;) will

TABLE |
KERNEL THAT INTEGRATES INTENSITY INFORMATION INTO THE LAPLACIAN
CALCULATION FOR LOCATION (z, y)

_Vf(le)(wyy) _Vf(o,n(zyy) _Vf(1,1)(wyy)
8 8 8

VI_1,0(=v) Vi1,0)(@:y)
(=1,0) (1,0)

- 8 +1 -8

_Vf(—l,—l)(z’y) _Vf(o,fl)(xay) _Vf(l,—l)($7y)
8 8 8

now yield values close to unity where intensity level in the
neighborhood is similar. Similarly, this will also give smaller
values (close to 0) for pixels with high-intensity gradients. To
address cases, where intensity patches are parallel to the object
contour, the proposed algorithm is modified by simply remov-
ing the inverting step for all eight matrices. By doing so, the
weighting factors will bias toward higher intensity differences
instead of homogenous regions

VI

Vi = ——28)
Xe.d) max(VI(m-))

(4)

The intensity-based weighting matrices were then rescaled
according to (5), where b isascalar value between (0, 1) which
will be referred to as the “control variable” henceforth. There-
fore, the values in the weighting matrix Vf(i’j) will vary in the
interval of (b, 1)

vf(hj‘) = Vf(zt,j) % (1 —0) +b. (5)

The purpose of the control variable b isto scale or control the
influence from the intensity variation onto the standard Lapla-
cian calculation. A lower value for b will increase the influence
of theintensity information and vice versa. Therefore, avalue of
1 for the control variable will calculate the standard Laplacian
vector field with no influence from the intensity values. This
value has to be set based on how prominent and consistent the
intensity patterns are in a given image. The practical range of
values would lie between the limited range of (0.7, 1) for this
experiment. Empirically, the control variable b was set to 0.9 for
all our experiments.

Once these sets of intensity weighting factor matrices are cal-
culated, those values can be directly used to change the way the
Laplacian static field is calculated at each iteration. Therefore,
instead of the standard Laplacian kernel, we propose to use the
kernel given by Tablel, whichisnow defined for each (x, y) co-
ordinate location in the image. Therefore, now we have a static
vector field generation process that includes both nonuniform
and local shape features depending on the intensity variation in
the region and the control variable b which controls the amount
of biasing. This approach provides the ability for each pixel to
affect the neighboring pixels based on the intensity similarity
or difference between them. It is also important to realize that
these weight matrices are static in nature and do not change with



Fig. 5. (a) Demonstration of the difference between the kernel of the pro-
posed method and the standard Laplacian kernel. (b) Enlarged view of the
3 x 3 neighborhood of the pixel location marked by yellow in (a). (c¢) and
(d) Representation of one the standard Laplacian and intensity biased Laplacian
kernels calculated for the neighborhood of interest.

each iteration. Therefore, the proposed algorithm is comparable
with the standard Laplacian calculations in computational cost.

Fig. 5 depicts the difference between the standard Laplacian
kernel and (oneinstance of) the proposed intensity-based L apla-
cian kernel. The instance of the proposed kernel [see Fig. 5(d)]
clearly depicts the biasing of the Laplacian field in directions
where similar intensities are present.

Next, the gradients at each pixel location ($) were calcu-
lated along the two major axes (x and y) using neighborhood
pixel values as given below where B(z,y) is the steady-state
Laplacian image

O(z,y) _ (B(x + Az,y) — B(z — Ax,y))
Az 2

O(z,y) _ (Blz,y+Ay) — B(z,y = Ay)) ©)
Ay 2 ’

Then, each of these gradient components was normalized and
stored in matrices N, and N, using the magnitude of the vector
at each pixel. The matrices N, and N, contain the intensity
biased Laplacian static field vector components for the z- and
y-axis directions.

Once the proposed intensity integrated Laplacian static field
is derived, the corresponding contour points and the distance
between them have to be calculated. The same thickness mea-
sures can be obtained by using starting points from either con-
tour segments or even the centerline points of the chromosome.
Euler’'s method was used for the aforementioned task. Thisisa
simple and yet effective way of traversing through a vector field
as given by (7), based on the local vector field direction and
magnitude. For implementation, the direction of traverse hasto
be adjusted (by flipping the polarity of the vector field when
necessary) in order to make sure that the thickness is measured
within the chromosome body

T, =2+ Ax
Yo =y +y'Az. )
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Fig. 6. Steps of tracing the thickness (yellow stars) at one contour location
of the chromosome where the arrows indicate the Laplacian vector field. The
black square indicates the starting point on the contour of the object. The final
thickness value is calculated by getting the sum of al the lengths of these small

steps.

First, the gradient values at each pixel location (V) is cal-
culated using each tangent vector component (V,, and N,) as
given by

U(z,y) = ¢'(z,y) = Ny(z,y)/N. (2, y). €S)

Computation of the thicknessinvolvesthe following iterative
process using Euler’'s method for each high-potential contour
point:

1) Based on the local direction of the vector field gradient

(W (x,y)), select the direction (axis) for incrementing.

2) Apply Euler's equation and calculate the new pixel loca-
tion along the direction of the vector field.

3) Calculate the Euclidean distance between the new and
current location and accumulate with the current total
distance.

4) If the new location is within the object of interest, start
from the first step onward. Once the calculated location
placed outside the object, the algorithm will move to the
next contour point.

The collection of these accumulated Euclidean length values

is considered as the thickness/width profile of that object. Fig. 6
depictsthe steps of tracing the thickness at one contour location
of the chromosome. In order to avoid incorporating the telomere
region width measurements, the profile was pruned on either
side by 10% (selected empirically) of the total number of points
on the contour segment. This reduces the chance of detecting a
telomere of a chromosome as a centromere location.

IIl. RESULTS

The centromere and centerline detection method described
by Arachchige et al. [4], [6] was used for comparing the results
of the proposed method. The centerline-based method was se-
lected sinceit can handle any chromosome morphol ogy without
yielding spurious branchesin the centerline and al so attemptsto
find the width profile similar in principle to most existing meth-
ods. The centromere location manually recorded by an expert
was used as the “gold standard” in the analysis. The analysis
of intraobserver variability of ground truth was not attempted at
thistime due to limitationsin resources. Since the chromosome
centromere is a region as opposed to a single location, the ex-
pert was instructed to draw aline across the centromere region.
Then, the perpendicular distance in pixels from the centromere
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TABLE I
BREAKDOWN OF CHROMOSOME CELL IMAGES AND CHROMOSOMES BASED ON
THE STAINING METHOD AND THE SISTER CHROMATID SEPARATION (SC SEP)

[ Abbr. | Label | Images | Chromosomes |
D-NSC DAPI-No SC Sep. 4 72
D-WSC DAPI-With SC Sep. 3 59
G-WSC | Geimsa-With SC Sep. 5 95

Total 12 226

location given by the algorithm (midpoint of the scan line with
the minimum width) to the user drawn line segment is denoted
asthe error of detection. In this study, we are more interested in
errorsin the vicinity of the center of the chromosome rather the
orientation of the scan line. Therefore, the experiment was set
up in away that any displacement of the detected centromere
location along the drawn ground truth centromere line would
not influence the accuracy of detection. Furthermore, we have
not normalized pixel error values since the centromere struc-
ture mostly remains fixed despite chromosome morphology or
chromosome number. These error values will be denoted by E;,
and E for the error of the Laplacian-based proposed method
centromere and the centerline method result, respectively, and
will be referred here after. The following section will provide
an in-depth analysis of the preliminary results provided in our
previous work [10].

A total of 226 human lymphocyte chromosomes from 12
chromosome cells were randomly selected for the study given
that they have no overlaps or touches with neighboring chro-
mosomes. Table Il provides the breakdown of these cell images
based on the staining method as well as the presence of sister
chromatid separation (judged visually).

The algorithm performs well on chromosomes regardless of
the staining method and the shape of the chromosome. Yet,
the algorithm can fail in the presence of high sister chromatid
separation in the binary segmentation of the chromosome. The
DCE agorithminthe contour partitioning algorithm can select a
high curvature point within the telomeric region and, thus, yield
the correction for sister chromatid separation ineffective. Fig. 7
shows some of the sample results for multiple staining methods
used commonly in cytogenetic studies and analysis. Fig. 7(f)
depicts an instance where the correction for sister chromatid
separation has failed to yield the expected result. In Fig. 7(e),
we have presented a case where the centerline-based method has
failed toyield an accurate centromerelocation. Thisis caused by
anoisy centerline which misses the actual width constriction at
the centromere location. But the proposed method yields better
results due to uniform sampling despite object boundary noise
[seeFig. 4(d)].

A. Satistical Analysis

A preliminary analysis of the two data distributions was per-
formed using the summary of the error metric values (in units
of pixels) obtained for the dataset (see Table I11) [10]. The pro-
posed algorithm yields a smaller error mean value while main-
taining a smaller standard error of mean. This observation is
further supported by the skewness and kurtosis val ues obtained
for the proposed method as opposed to the centerline method.

Fig. 7. (a) Demonstration of some sample results of the algorithm where
the detected centromere location is depicted in ared color circle against our
previous approach [4] in a blue color star, while the expert-drawn centromere
line is depicted in white. (a) and (b) Results of DAPI stained chromosomes,
(c)—f) results of Geimsa stained chromosomes. (€) Instance in which the pro-
posed algorithm has outperformed the state of the art significantly; (f) instance
in which the proposed agorithm has failed to yield the accurate centromere
location due to high degree of sister chromatid separation.

TABLE Il
DESCRIPTIVE VALUES FOR THE DETECTION ERROR DATASET WHEN ANALY ZED
WITH THE PROPOSED LAPLACIAN-BASED METHOD (E,) AND
CENTERLINE-BASED METHOD (E ) [4] (REPRODUCED FROM THE PREVIOUS

WORK [10])
N Mean Kurt- Skew-
Stat. Std. Error -sis -ness
Er 226 | 4.0243 4535 17.859 | 3.839
Fco 226 | 8.7819 7749 2.657 1.834

The higher kurtosis value suggests a tight clustering of error
values around the peak while the higher skewness depicts an
asymmetric distribution biased toward lower error value.

Since the same set of chromosomes were used to analyze the
results of both algorithms, this experiment falls under the cate-
gory of repeated measurement analysis. Therefore, a“t statistic”
cannot be utilized to obtain the significance of theresults. There-
fore, the datadistribution was then checked for normality within
each category using the Kolmogorov—Smirnova normality test.
Thetest proved that we can reject the null hypothesis (p < 0.05)
that the distributions are normal (test statistics for £, = 0.28
and Ec = 0.25). This deviation from normality is further sup-
ported by the high skewness and kurtosis values (see Table l11).
This provides evidence toward the conclusion that the proposed
method yiel dsabetter grouped distribution toward alower mean
error value when compared to the centerline method.

The significance of these finding was explored using the
“Wilcoxon signed rank test” which can be directly applied to
repeated measurements without the normality constraint. The
results of thistest are givenin Table 1V.

The datain Table IV analyze cases based on their signs after
comparing each corresponding pair. Therefore, it can be ob-
served that the sum of positive ranksis significantly higher than
that for negative ranks. This corresponds to the cases in which



TABLE IV
WILCOXON SIGNED TEST RANK ANALYSIS RESULTS
N Mean Sum of
Rank Ranks
(-) Ranks 80 89.74 7179.00
Ec - Er | (+) Ranks 146 | 126.52 | 18472.00
Ties 0
Total 226

Fig. 8. Scatter plots for demonstrating the correlation between the two de-
tection error distributions in which the “X” axis is the detection error of the
proposed Laplacian-based method (E;, ) and the“y” axisisthe centerline-based
method (E(ﬁ )

the Laplacian-based proposed method yields lower error values
compared to our previous approach.

Based on this analysis, we conclude that the proposed
L aplacian-based method elicits statistically significant improve-
ment in centromere localization (Z = —5.738, p < 0.05) com-
pared to the centerline-based method.

The Games-Howell post hoc test was selected to analyze
variability of error measurements between thethreelabelsgiven
in Table Il for the proposed method since the Levene test proved
that the null hypothesis of equal variance can be rejected (test
statisticsfor £, = 9.763 and B = 23.362).

The post hoc analysis demonstrates that the performance of
the proposed method varies significantly (p(= 0.016) < 0.05)
only between D-NSC (DAPI without SC Sep.) and G-WSC
(Geimsa stained). In the meantime, the results of the centerline-
based method vary significantly (p(= 0.000) < 0.05) between
groups D-NSC (DAPI without SC Sep.) and G-WSC (Geimsa
stained) as well as groups D-NSC (DAPI without SC Sep.) and
D-WSC (DAPI with SC Sep.) (p(= 0.001) < 0.05). Thisshows
that the proposed method varies less in performance based on
the image group type in comparison to the centerline-based
method. The caseswith visible sister chromatid separation were
also handled better through the proposed method compared to
the centerline-based method.

The scatter plot shown in Fig. 8 showsthe correlation of mea-
surement error between the two methods. The outliers of the
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error values (a common shortcoming shared by the proposed
and prior approaches) are observed to be contributed by the
inaccuracy of the contour partitioning and correcting for sister
chromatid separation. The same phenomenon was observed be-
tween the error valuesfor the proposed method with and without
integrating intensity information. A nonparametric correlation
test using the Spearman coefficient revealed a strong correlation
between the error values obtained through both these methods
(pcx,y) = 0.250). The clustering of data points in Fig. 8 cor-
responds to the majority of this correlation measurements been
significant.

To study the benefit of the proposed algorithm, we examined
11 chromosomes from the dataset which had the most positive
impact from the addition of intensity into the algorithm. They
showed animprovement of error by 20.9 pixelsin average. From
this set of chromosomes, three were affected by the presence of
high degree of sister chromatid separation. The chromosomes
that were not affected by this phenomenon showed the presence
of alighter intensity band close to the centromere location. The
proposed method has guided the thickness measuring process
more accurately by retaining the scan line within this intensity
band. On the other hand, only four chromosomes were present
in the dataset with a considerable negative bias (average of 26.4
pixelsinerror). A close examination of these four chromosomes
revealed the presence of high degree of sister chromatid sepa-
ration. We observed that such separation tends to increase the
error of centromere detection. Conversely, improved contour
partitioning which correctly recognizes sister chromatid separa-
tion will result in the proposed integration of intensity onto the
Laplacian framework yield better accuracy.

IV. CONCLUSION

We have presented a novel intensity integrated Laplacian-
based method for detecting centromere locations in human
metaphase chromosomes more accurately. The statistical anal-
ysis demonstrated significant improvement in the accuracy of
centromere localization through the proposed method in com-
parison to a centerline-based method [4]. We have presented a
framework for incorporating additional features into the Lapla-
cian thickness measurement process and have demonstrated us-
ing the intensity feature. We will further explore other possible
features such as boundary concavity which can aid the detection
of centromere locations as well as other similar measurement
problems. Furthermore, an improvement in the accuracy detect-
ing boundary salient pointsfor contour partitioning can increase
the accuracy of the proposed algorithm significantly. Further
analysis is required including various other existing staining
methods to test the performance of the proposed algorithm. We
also need to exploreinter- and intraobserver variability in man-
ually detecting centromere locations. In addition, we plan to
further develop the algorithm to detect dicentric chromosomes.

The proposed method requires 3.85 s per chromosome using
MATLAB on an Intel core i5 3.30-GHz processor. Although
this is noticeably slower than our previous approach (0.91 s
per chromosome), we opted to sacrifice the loss of speed for
a substantial gain in accuracy. The main factor for increased
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computational burden was observed to betheiterative Laplacian
field calculation. We are currently exploring methods for paral-
lelizing the proposed method and effectively reducing the pro-
cessing time.
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