Genome-Scale Variant Interpretation

Automated Radiation Dose Estimation

Mission Statement

MutationForecaster® (mutationforecaster.com) is Cytognomix’s patented web-portal for analysis of all types of mutations (coding and non-coding), including interpretation, comparison and management of genetic variant data. It’s a fully automated genome interpretation solution for research, translational and clinical labs.

MutationForecaster® combines our world-leading genome interpretation software on your exome, gene panel, or complete genome (Shannon transcription factor and splicing pipelines, ASSEDA, Veridical) with the Cytognomix User Variation Database and  Variant Effect Predictor.  With our integrated suite of software products, analyze coding, non-coding, and copy number variants, and compare new results with existing or your own database.  Select predicted mutations  by phenotype using articles with CytoVisualization Analytics.  With Workflows,  automatically perform end-to-end analysis with all of our software products.

Download an 1 page overview of MutationForecaster®link .

You can now experience our integrated suite of genome interpretation products through a free trial of MutationForecaster®. Once you register, analyze datasets that we have analyzed in our peer-reviewed publications with any of our software tools.

Ionizing radiation produces characteristic chromosome changes. The altered chromosomes contain two central constrictions, termed centromeres, instead of one (known as dicentric chromosomes [DCs]). Chromosome biodosimetry is approved by the IAEA for occupational radiation exposure, radiation emergencies, or monitoring long term exposures.  In emergency responses to a range of doses, labs need efficient methods that identify DCs.

Cytognomix has developed  a novel approach to find DCs that is independent of chromosome length, shape and structure from different laboratories (paper: TBME).  The Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) software  works on multiple platforms and uses images produced by any of the existing automated metaphase capture systems found in most cytogenetic laboratories. ADCI is now available for for trial or  purchase (link).  Or contact us for details (pricing).

ADCI* uses machine learning based algorithms with high sensitivity and specificity that distinguish monocentric and dicentric chromosomes (Try the Dicentric Chromosome Identifier web app). With novel image segmentation, ADCI has become a fully functional cytogenetic biodosimetry system. ADCI takes images from all types of commercial metaphase scanning systems,  selects high quality cells for analysis, identifies dicentric chromosomes (removing false positives), builds biodosimetry calibration curves, and estimates exposures.  ADCI fulfills the criteria established by the IAEA for accurate triage biodosimetry of a sample in less than an hour. The accuracy is comparable to an experienced cytogeneticist. Check out our online user manual: wiki.

We find and validate mutations that others cannot with advanced,  patented genomic  probe and bioinformatic technologies. Cytognomix continues our  long track record of creating technologies for genomic medicine. We anticipate and implement the needs of the biomedical and clinical genomics communities.

Additional Services

Browse the products section of the menu found in the header bar for more information regarding any of our services.

Latest Posts

November 12, 2016. MutationForecaster detects mutations that alter transcriptional regulation

Cytognomix‘s goal to enable complete gene or genome bioinformatic mutation interpretation for our customers and partners. We will be introducing multiple new types of mutation analyses to our MutationForecaster product over the coming year.  We will be introducing a new type of mutation analysis to the MutationForecaster product next week. It will still use the Shannon […]

November 28, 2016. Article on transcription factor binding sites published in Nucleic Acids Research

Citation: Lu R, Mucaki E and Rogan PK. Discovery and Validation of Information Theory-Based Transcription Factor and Cofactor Binding Site Motifs,  Nucleic Acids Research. DOI: 10.1093/nar/gkw1036  (pdf)   Download: Copyright licence (CC-BY) Manuscript with Figures – Lu, Mucaki and Rogan, Nucl. Acids Res. 2016 Response to peer reviewers Supplementary Methods Supplementary – Table S1;  Table S2;  Table S3;  Table […]

October 19, 2016. Publication in Atlas of Science for the layperson

The Atlas of Science  has published a simplified description for the lay public of our 2016  study of gene variants in hereditary breast and ovarian cancer in BMC Medical Genomics (citation below). Please see:  Focusing on the most relevant gene variants in inherited breast and ovarian cancer by  Eliseos Mucaki and Peter Rogan. (http://atlasofscience.org/focusing-on-the-most-relevant-gene-variants-in-inherited-breast-and-ovarian-cancer/#more-16892) Original technical […]

Sept. 23, 2016. Notice of Allowance of claims for US patent application

Cytognomix has received a notice of allowance of all claims for US Pat. App. Ser. No. 13/744,459: Stable gene targets in breast cancer and use thereof for optimizing therapy Inventors: Peter K. Rogan and Joan H.M. Knoll The patent is based on our previous publication:  Park et al. Structural and genic characterization of stable genomic regions […]

July 29, 2016. The MutationForecaster Value Proposition

MutationForecaster is catching on. Researchers, clinicians and commercial laboratories are realizing the value of being able to detect and interpret mutations that other platforms miss.  Cytognomix has picked up multiple new subscribers from Germany, Switzerland, Australia,  China, and Canada this year, and subscription renewals from last year. Cytognomix continues to push the envelope, for the […]