Genome-Scale Variant Interpretation

Automated Radiation Dose Estimation

Mission Statement

MutationForecaster® ( is Cytognomix’s patented web-portal for analysis of all types of mutations (coding and non-coding), including interpretation, comparison and management of genetic variant data. It’s a fully automated genome interpretation solution for research, translational and clinical labs.

MutationForecaster® combines our world-leading genome interpretation software on your exome, gene panel, or complete genome (Shannon transcription factor and splicing pipelines, ASSEDA, Veridical) with the Cytognomix User Variation Database and  Variant Effect Predictor.  With our integrated suite of software products, analyze coding, non-coding, and copy number variants, and compare new results with existing or your own database.  Select predicted mutations  by phenotype using articles with CytoVisualization Analytics.  With Workflows,  automatically perform end-to-end analysis with all of our software products.

Download an 1 page overview of MutationForecaster®link .

You can now experience our integrated suite of genome interpretation products through a free trial of MutationForecaster®. Once you register, analyze datasets that we have analyzed in our peer-reviewed publications with any of our software tools.

Ionizing radiation produces characteristic chromosome changes. The altered chromosomes contain two central constrictions, termed centromeres, instead of one (known as dicentric chromosomes [DCs]). Chromosome biodosimetry is approved by the IAEA for occupational radiation exposure, radiation emergencies, or monitoring long term exposures.  In emergency responses to a range of doses, labs need efficient methods that identify DCs.

Cytognomix has developed  a novel approach to find DCs that is independent of chromosome length, shape and structure from different laboratories (paper: TBME).  The Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) software  works on multiple platforms and uses images produced by any of the existing automated metaphase capture systems found in most cytogenetic laboratories. ADCI is now available for for trial or  purchase (link).  Or contact us for details (pricing).

ADCI* uses machine learning based algorithms with high sensitivity and specificity that distinguish monocentric and dicentric chromosomes (Try the Dicentric Chromosome Identifier web app). With novel image segmentation, ADCI has become a fully functional cytogenetic biodosimetry system. ADCI takes images from all types of commercial metaphase scanning systems,  selects high quality cells for analysis, identifies dicentric chromosomes (removing false positives), builds biodosimetry calibration curves, and estimates exposures.  ADCI fulfills the criteria established by the IAEA for accurate triage biodosimetry of a sample in less than an hour. The accuracy is comparable to an experienced cytogeneticist. Check out our online user manual: wiki.

We find and validate mutations that others cannot with advanced,  patented genomic  probe and bioinformatic technologies. Cytognomix continues our  long track record of creating technologies for genomic medicine. We anticipate and implement the needs of the biomedical and clinical genomics communities.

Additional Services

Browse the products section of the menu found in the header bar for more information regarding any of our services.

Latest Posts

January 9, 2019. Article on fully automated interpretation of the dicentric chromosome assay for radiation quantification now available

Our paper, “RADIATION DOSE ESTIMATION BY COMPLETELY AUTOMATED INTERPRETATION OF THE DICENTRIC CHROMOSOME ASSAY”  is now published in the journal Radiation Protection Dosimetry. Unfortunately, the journal has not made the article open access. We have made it available on our ADCIWiki website, as permitted by the copyright agreement. The link to the pdf full text […]

November 28, 2018. New automated cytogenetic biodosimetry article accepted for publication

RADIATION DOSE ESTIMATION BY COMPLETELY AUTOMATED INTERPRETATION OF THE DICENTRIC CHROMOSOME ASSAY Li, Yanxin; Shirley, Ben; Wilkins, Ruth; Norton, Farrah; Knoll, Joan; Rogan,Peter Radiation Protection Dosimetry, in press                   Figure 2 (from the article): Representative heat maps of chromosome object count distributions for Health Canada calibration (HC ##Gy.csv) […]

October 19, 2018. Presentations at the 7th Northeast Regional Chromosome Pairing Conference

CytoGnomix and the University of Western Ontario presented several papers about differential accessibility of single copy FISH probes to metaphase chromosomes at the Chromosome Pairing conference, held at Laurentian University, Sudbury, Ontario, Canada. We are grateful to Prof. Thomas Merritt for inviting us to participate in this exciting conference. The following talks were presented: Seana […]