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abstract

PURPOSE The cancer research community is constantly evolving to better understand tumor biology, disease
etiology, risk stratification, and pathways to novel treatments. Yet the clinical cancer genomics field has been
hindered by redundant efforts to meaningfully collect and interpret disparate data types from multiple high-
throughput modalities and integrate into clinical care processes. Bespoke data models, knowledgebases, and
one-off customized resources for data analysis often lack adequate governance and quality control needed for
these resources to be clinical grade. Many informatics efforts focused on genomic interpretation resources for
neoplasms are underway to support data collection, deposition, curation, harmonization, integration, and
analytics to support case review and treatment planning.

METHODS In this review, we evaluate and summarize the landscape of available tools, resources, and evidence
used in the evaluation of somatic and germline tumor variants within the context of molecular tumor boards.

RESULTSMolecular tumor boards (MTBs) are collaborative efforts of multidisciplinary cancer experts equipped
with genomic interpretation resources to aid in the delivery of accurate and timely clinical interpretations of
complex genomic results for each patient, within an institution or hospital network. Virtual MTBs (VMTBs)
provide an online forum for collaborative governance, provenance, and information sharing between experts
outside a given hospital network with the potential to enhance MTB discussions. Knowledge sharing in VMTBs
and communication with guideline-developing organizations can lead to progress evidenced by data har-
monization across resources, crowd-sourced and expert-curated genomic assertions, and a more informed and
explainable usage of artificial intelligence.

CONCLUSION Advances in cancer genomics interpretation aid in better patient and disease classification, more
streamlined identification of relevant literature, and a more thorough review of available treatments and pre-
dicted patient outcomes.
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THE CURRENT STATE OF PRECISION ONCOLOGY

Clinical decision making requires rapid integration of
multiple data streams (eg, symptoms, signs, imaging)
and choice of appropriate therapy. Although this
process has not changed much over time, the data
streams have evolved to include patient-reported
outcomes, biometrics and data from wearable de-
vices, radiographs, and genomic molecular profiles.
Furthermore, the rapid development of next-generation
sequencing (NGS) technologies and computing sys-
tems has had a tremendous impact on clinical re-
search, particularly in the understanding of underlying
physiologic mechanisms of diseases and identifying
key altered pathways susceptible to molecular tar-
geted or immunologic therapies.1 Although such high-
throughput strategies are often not necessary in de-
termining clinical action (ie, HER2 amplification can

be treated with trastuzumab), the adoption of NGS
technologies in oncology enables the customization
and matching of therapies to a patient’s molecular
profile, especially if the patient has experienced pro-
gression on multiple lines of therapy, thereby reducing
adverse effects as a result of unnecessary treatments.2

In 2019, nearly a third of early-stage oncology drugs or
biologics and 91% of late-stage drugs from pharma-
ceutical companies involved the use of biomarker
tests.3 In addition, over a third of drug approvals in 2019
included DNA-based biomarker(s) in their original US
Food and Drug Administration (FDA) submissions.3

Concurrently, we have increased our understanding
of the underlying pathophysiology of both the tumor
and patient-tumor interactions through this omics
data. For example, in most solid tumors, the patho-
genic driver mutations that inform clinical management
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remain the same between primary and metastatic (sec-
ondary) tumor sites.4,5 However, secondary tumors may
develop additional genomic signatures that are associated
with disease progression and/or resistance to specific
targeted therapies.6,7 National trials8-10 that pair patient
tumors with specific genomic alterations to targeted
medications represent the first step in this paradigm shift.
However, the interpretation of NGS-based test results in
oncology remains the critical bottleneck in translating these
data into effective treatment strategies.11

Now more than ever, there is a need for multidisciplinary
approaches in cancer care because no one person can be
an expert in all required fields, including but not limited to
the clinical domain, genomic profiles, disease etiology,
drug sensitivity and resistance, clinical trials, and emerging
scientific evidence for targeted treatments. In addition, it is
paramount to understand the breadth of available resources
and forums for the clinical interpretation of molecular data
in cancer care. In this article, we review the landscape of
genomic interpretation tools and knowledgebases, as well as
guidelines that support the clinical interpretation and ap-
plication of NGS data within the context of multidisciplinary
molecular tumor boards (MTBs) and the potential applica-
tion of virtual MTBs (VMTBs) that may complement MTB
activities. See the glossary of terms provided in the Appendix.

MTBs

To support the wider integration of precision medicine in
cancer, several academic medical centers and community
clinics have established multidisciplinary MTBs, generally
composed of oncologists, molecular pathologists, clinician sci-
entists, genomic scientists, genetic counselors, bioinformaticians,
and other experts in cancer and/or genetics within an in-
stitution to discuss the utilization of cancer NGS results in
patient treatment decisions.12,13 MTB workflows typically fo-
cus on one or more cancer types and include the use of
multiple variant interpretation knowledgebases, a software to
input clinical and genomic test results, and custom algorithms
to match patient characteristics to treatment and clinical trial
recommendations.14 However, not all institutions have access

to appropriate expertise, time, and resources to conduct regular
MTB discussions, which may result in insufficient utilization of
relevant NGS test results and ultimately suboptimal patient
care, especially in challenging cancer situations.12,15 In such
scenarios, VMTBs provide a route of communication, in-
formation sharing, and data provenance by connecting
genomic scientists and clinicians from multiple cancer
centers and community clinics globally16 (Fig 1).

In a VMTB setting, case submission typically requires
sharing de-identified patient information, including medi-
cal, treatment, and family history; radiology, pathology, and
molecular profiling results from a spectrum of assays (eg,
immunohistochemistry [IHC], fluorescent in situ hybrid-
ization, NGS); and other useful information for interpreting
genomic results or recommending treatment. The case is
then discussed via a Health Insurance Portability and
Accountability Act–compliant Web conferencing software,
thereby providing ameans to share knowledge from experts
at multiple institutions and their cumulative genomic re-
sources for variant interpretation. VMTBs also provide
a setting agnostic of physical and geographic constraints,
allowing expansive crowd-sourced participation to better
discuss cancer variant interpretation in the context of
clinical data available. Although results from germline
testing are important, somatic variant testing data are most
often discussed in a VMTB forum. Several publicly or
commercially available genomic variant interpretation re-
sources and software are used within VMTBs and are in-
dispensable for determining clinical relevance (diagnosis,
prognosis, and therapeutic propensity) of variants within
the context of a patient’s disease and pathology. Further-
more, patient cases evaluated in MTBs can often benefit
from being referred to a VMTB.17 VMTB participation can
help resolve conflicting clinical variant interpretations, as
well as train clinicians and clinical researchers to properly
interpret genomic data in a clinical context. Several in-
ternational efforts are ongoing, including but not limited to
the VMTB forums conducted by the Variant Interpretation
for Cancer Consortium (VICC), Vanderbilt-Ingram Cancer

CONTEXT
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Center, and Cancer Core Europe to leverage global sharing
of genomic expertise in clinical practice.

GUIDELINES AND STANDARDS TO DETERMINE THE
CLINICAL SIGNIFICANCE OF GENOMIC DATA AND EXPERT
KNOWLEDGE CURATION

Clinical-grade genomic variant interpretation is a well-
documented pain point in translating tumor NGS test re-
sults into clinical action.11 Clinicians and molecular pa-
thologists must order NGS tests from Clinical Laboratory
Improvement Amendments–certified genomic testing lab-
oratories to ensure high-quality results to make clinical care
decisions. Several professional societies around the world
have developed guidelines to help molecular pathologists
and clinical genomics scientists interpret multigene cancer
panel sequence variants and determine their clinical sig-
nificance in a standardized manner. For example, bio-
markers relevant to disease predisposition are typically
evaluated in a germline context and are classified under the
AmericanCollege ofMedical Genetics andGenomics (ACMG)/
Association for Molecular Pathology (AMP) guidelines for
interpretation of sequence variants.18 Biomarkers relevant

to prognosis and therapeutic response are typically eval-
uated in a somatic context under AMP, ASCO, and College
of American Pathologists (CAP) guidelines for the reporting
of cancer somatic variants19 in the United States. The
European Society for Medical Oncology (ESMO) also rec-
ommends the ESMO Scale for Clinical Actionability of
Molecular Targets (ESCAT) variant classification guidelines.20

The AMP/ASCO/CAP and ESCAT guidelines slightly differ
from each other. The ESCAT highest level of clinical sig-
nificance (Tier I) differentiates between randomized (Tier
IA), nonrandomized (Tier IB), and basket trials (Tier IC),
whereas AMP does not. AMP considers somatic variants
that predict response to FDA-approved therapies or rec-
ommended by professional societies like the National
Comprehensive Cancer Network (NCCN) as the highest
level of clinical significance (Tier IA). In addition, somatic
variants that predict response to cancer therapies based on
well-powered studies with expert consensus, but not yet
included in professional guidelines, are also considered as
having high-level clinical significance (Tier IB).19 Furthermore,
AMP accounts for evidence from multiple case reports to

Patient seen 
in clinic

Physician presents 
treatment options 

to patient

Multi-institutional experts
discuss patient case in VMTB 

VMTB/MTB
recommendations

Physician orders NGS 
test; data analyzed, 

and genomic testing 
report provided

Select patient cases de-
identified and prepared 

for VMTB discussion

Local experts 
discuss patient 
case within MTB

FIG 1. Incorporation of molecular tumor board (MTB) and virtual molecular tumor board (VMTB) workflows into
clinical reporting practices. After a patient consults with a clinician and provides a tumor specimen, the clinical
next-generation sequencing (NGS) testing is ordered. The clinical laboratory performs the NGS assay and se-
quencing and reports genomic variants of clinical relevance. The MTB leverages local expertise and available
resources to interpret the clinical significance of genomic data. Because MTBs operate locally, there is often
opportunity for adding insight directly from the physician and patient that can help guide and/or prepare clinical
recommendations. When local expertise is insufficient to make appropriate clinical recommendations, variants are
prioritized and patient data are de-identified before VMTB submission. VMTB members from multiple institutions
use their cumulative genomic resources and expertise to evaluate an NGS case and to discuss consensus
recommendations for the patient.
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determine the clinical significance of cancer variants, whereas
ESCAT does not. Molecular pathologists and genomic sci-
entists must be cautious of these seemingly subtle differences
in guidelines, which introduce subjectivity and discordance in
the interpretation and reporting of cancer variants between
clinical laboratories.21

In an attempt to standardize the application of variant in-
terpretation and reporting guidelines, collaborative efforts
such as the Clinical Genome (ClinGen) Resource
program22 have organized working groups (WGs) of mul-
tidisciplinary experts in various clinical domains including
somatic and hereditary cancers. These clinical domain
WGs oversee multiple gene-disease specific variant
curation efforts, called Gene Curation Expert Panels or
Variant Curation Expert Panels (VCEPs).23 ClinGen germline
VCEPs recommend a standardized approach to apply
the ACMG/AMP guidelines to interpret germline variants
using an FDA-recognized process.24 An analogous so-
matic VCEP process is currently under development by
the ClinGen Somatic Cancer WG. Such multi-institutional
endeavors address gaps in existing variant classification
guidelines, ensure consistency and transparency in the
clinical interpretation of genomic variants between knowl-
edgebases, and subsequently inform MTB and VMTB
recommendations.

LANDSCAPE OF GENOMIC DATA RESOURCES AND
KNOWLEDGEBASES THAT INFORM TUMOR
BOARD DISCUSSIONS

The large-scale adoption of NGS-based testing in clinical
oncology underscores the need for standardized variant
interpretation and reporting procedures across clinical
laboratories. When evaluating cancer genomic biomarkers,
clinicians, molecular pathologists, and clinical genomic
scientists primarily reference knowledgebases with human-
curated collections of biomedical evidence supporting
assertions on the clinical significance of genomic variants in
a disease context.25 For example, the contextualized in-
terpretation of a variant may be predisposing (eg, BRCA1/2
variants increase predisposition to develop breast or ovarian
cancers in the germline context and can also predict thera-
peutic response to poly [ADP-ribose] polymerase [PARP]
inhibitors in breast or ovarian cancers in the somatic tumor
context), prognostic (eg, TP53 mutations predict poor out-
come in chronic lymphocytic leukemias), diagnostic (eg,
PCM1-JAK2 fusions are exclusionary criteria for a diagno-
sis of chronic myelomonocytic leukemia with evidence of
eosinophilia), or predictive (eg, patients with BRAF
V600E–mutant melanomas benefit from combination
therapy with RAF and MEK inhibitors). Table 1 presents
a survey of clinically relevant knowledgebases.23,26-39

Knowledgebases vary considerably in both data structure
and content. Consequently, genomic scientists must select
a subset of resources for their clinical analysis and reporting
workflows to reduce the intellectual investment needed to

apply relevant knowledgebase information to a patient
case. The VICC represents a collaborative effort between
many knowledgebase leaders to improve interoperability
and accessibility of curated content across resources
adopting standards for data representation.40 Although
cancer variant knowledgebases are useful in providing
clinical assertions, they often fall short in the ability to in-
terpret rare or poorly studied cancer variants, resulting in
discordant or nonoverlapping assertions between knowl-
edgebases or VMTB entities.40 In such cases, in silico
prediction algorithms41-44 applied to the genomic findings
in a cancer profile can predict which variants are onco-
genic. However, the results produced by these methods,
especially for benign variants, are frequently discordant
and may need validation based on their structural45 or
functional46 impacts. Population databases (eg, gnomAD,
dbSNP) determine whether a variant is present in the
general population and therefore less likely to be onco-
genic. Large data sets, such as in The Cancer Genome
Atlas, International Cancer Genome Consortium, Catalogue
of Somatic Mutations in Cancer, or cBioPortal, identify
whether a variant has been consistently observed within
disease cohorts but absent or rare in controls.47 Although
in silico models, population databases, and large data sets
cannot replace human expert–curated knowledgebases,
these resources are essential for the scientist to interpret
genomic data and predict oncogenicity. Furthermore, ef-
forts are ongoing to automate the current variant in-
terpretation processes with artificial intelligence (AI)
strategies to integrate resources automatically and make
interpretation processes scalable.

APPLICATIONS OF AI IN TUMOR BOARDS

The surge in clinically relevant molecular data accompa-
nied by advances in AI and machine learning (ML) has
enabled integration of information extracted from large data
sets into clinical decision-making processes. For example,
data from NGS-based molecular profiling and drug sen-
sitivity experiments can help build predictive models to
match an individual patient with the appropriate therapy.
This is a key component of precision oncology, and al-
though the universally applicable, unbiased models remain
elusive, there have been some promising applications to
optimizing enrollment in clinical trials.48 Drug development
is another area of translational research where ML has
found success in terms of identifying potential druggable
targets for modulating a disease state.49

AI-based tools are in use or development for a number of
tasks performed by MTBs and VMTBs, and as these efforts
progress, more use of AI-driven technologies is inevitable.
Biomedical literature remains a primary source of content
to annotate and interpret cancer variants for supporting
clinical decisions. However, it is impractical for biocurators,
clinical researchers, and oncologists to keep up with the
rapidly growing volume and breadth of information, es-
pecially those that describe the therapeutic implications of
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biomarkers. The intrinsic complexity of biomedical text and
vocabulary necessitates the use of sophisticated ap-
proaches including natural language processing (NLP) and
ML to mine and biocurate clinically relevant information on
drugs, genes, diseases, and therapeutic opportunities. A
selected list of NLP and ML tools to aid in annotation and
interpretation of cancer genomic variants is presented in
Table 2.50-57

Advancement of publicly available AI tools and the de-
velopment of commercial software have the potential to
propel VMTBs significantly. It is important to note that the
exact nature of commercial systems is proprietary and that
the degree to which they use NLP or other AI technologies
cannot be verified in the public domain. However, AI text
mining and data analysis are fundamental components of
commercial sector curation of cancer variant knowledge,
both for databases kept in-house by large laboratories and
commercially available products. AI has also been
deployed in systems that match a patient’s genetic test
results to eligibility for clinical trials, using NLP to mine
databases such as the National Institute of Health’s Clin-
icalTrials.gov, which rapidly updates information on
. 300,000 clinical trials.58

BARRIERS TO THE UTILIZATION OF NGS DATA AND AI
APPLICATIONS IN VMTBs

Experts participating in VMTBs often communicate with
oncologists to help determine appropriate treatment op-
tions for patients based on current scientific knowledge
associated with their tumor molecular profile. Defining the
clinical actionability of variants is perhaps the foremost
challenge in the use of VMTBs. Randomized controlled
trials (RCTs) remain the gold standard for proving treatment
efficacy. However, it is impossible to conduct RCTs in-
dividually for all biomarker-treatment–cancer type combi-
nations as a result of the tremendous overhead and small
sample sizes. This has led to a number of new trial
designs.59 Umbrella trials, such as the I-SPY2 trial in breast
cancer9 and the LUNG-MAP trial in lung cancer,60 use
a master protocol for a single tumor tissue type but multiple
biomarkers and treatments. While the I-SPY2 trial uses
gene expression array testing, the LUNG-MAP trial con-
siders NGS and IHC biomarkers. Basket or bucket trials, in
contrast, consider a biomarker-drug pair and multiple tu-
mor types, such as the imatinib B2225 trial, which con-
sidered 40 malignancies with activation of specific tyrosine
kinases and led to FDA approval for 4 of them.61 The
MyPathway multiple basket trial showed that the combi-
nation treatment of pertuzumab and trastuzumab may
prove to be beneficial in patients with HER2-amplified
colorectal cancer, and this treatment is now included in
the NCCN guidelines.62 The National Cancer Institute (NCI)
MATCH and Pediatric MATCH trials have been described
as hybrids between umbrella and basket trials because
they consider multiple tumor types, biomarkers, and
drugs.63,64 Thus, it is essential that results from these novel

designs be discussed in VMTBs as well as between re-
searchers trained in the systematic review/evidence-based
medicine paradigm and those trained as bioinformaticians
or biocurators.65

Several commercial entities market the prediction of clin-
ically actionable mutations without the need for in-
terpersonal dialog between genomic scientists and
clinicians for routine patients.66-68 Moreover, novel clinical
trial design and streamlined application of interpretation
guidelines to assess the clinical actionability of cancer
variants are insufficient when the variants are either too rare
or there is no evidence for their match to a specific therapy.
For example, only 17% of the first 5,963 patients in the NCI
MATCH trial had an actionable mutation of interest
(aMOI),69 whereas only 29% of the first 422 patients in the
NCI Pediatric MATCH trial had an aMOI.70 One approach to
address this issue is to assess variants in genes or proteins
that are downstream of oncogenic alterations in a system-
atic, evidence-based way, thereby increasing the number
of patients who may potentially benefit from targeted
therapies.71 With larger gene panels and complete genome
sequencing for each patient on the horizon, available cu-
rated resources may not provide the most sustainable
variant interpretation. We may need to leverage more al-
gorithmic approaches to alter the way we interact with
variant interpretation resources.72

As AI and ML technologies evolve and more tasks asso-
ciated with VMTBs are undertaken by AI systems, it is likely
that cancer variant interpretation will become more auto-
mated. However, there is a large gulf between a decision-
support system and one that makes fully executable clinical
decisions. For the foreseeable future, AI systems will
support, but not replace, human curators, laboratory
professionals, and physicians in directing personalized
cancer treatment. A key to the progress of automated
systems will be developing the means to evaluate their
clinical performance. Standards for data accuracy and
clinical utility of systems need to be developed so that the
efforts of AI developers are clinically useful. It will also
become important to quantify the additional time and
workflow demands of larger NGS data sets to prove utility
and feasibility of new AI-assisted VMTB tools that automate
or expedite variant interpretation.46,72 In addition, the need
for innovative data visualization methods to improve us-
ability of molecular diagnostic reports and enable a more
interactive and effective cancer variant interpretation ex-
perience for end users will become critical.73,74

FUTURE DIRECTIONS

A multitude of efforts are underway to advance precision
oncology, including novel trial designs that match a patient
to the most appropriate therapy based on their tumor
molecular profile (eg, I-SPY,9 NCI MATCH,8 TAPUR,10

SMMART75), large genomic data sharing initiatives
across country borders (eg, ClinGen22), data standards
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and interoperability tools (eg, Global Alliance for Genomics
and Health,76 Fast Healthcare Interoperability Resources,77

Substitutable Medical Applications, Reusable Technologies78),
and emerging academic and commercial tumor board
technologies.16,79,80 These efforts will be aided by guide-
lines and standards for genomic testing and clinical in-
terpretation of cancer variants. These will continue to evolve
with new discoveries of biomarkers and treatments, es-
pecially those involving combinations of immuno-oncology,
targeted, and chemotherapeutic agents. As AI and ML
models improve and more data become available, some
current implementation challenges will be addressed, in-
cluding overfitting of data and lack of external validation.
These developments within informatics, alongside high

standards for validation among clinicians and researchers,
are crucial if ML-based technologies are to benefit future
cancer care. Innovative and integrated digital approaches
that leverage these advances, including VMTBs, will be-
come critical to enable knowledge sharing among different
institutions and standardize the use of patient-derived
genomic data in clinical decision making. VMTBs have
the potential to increase the breadth of resources accessed
to interpret a patient case, bring local expertise to a global
stage, and supplement the work of traditional MTBs and
disease-specific tumor boards with extramural expertise.
The VMTB model reviewed here can be a valuable ap-
proach to address the genomic variant interpretation bot-
tleneck in the clinical context of cancer care.
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APPENDIX

Glossary of Terms

Resource or tool: Any module either on screen or in print that aids in
interpreting a genetic variant.

Clinical grade: Term used to describe a high caliber of sensitivity, spec-
ificity, and reproducibility needed to confidently use a laboratory assay to
ascertain clinical relevance from characteristics of a patient specimen.

Interpretation: A cumulative assertion about a variant or set of variants
made by taking into account several pieces of genomic evidence.

Molecular tumor board (MTB): A group of people that collaboratively
share expertise (eg, pathology, informatics, genetics, oncology) to provide
clinical suggestions based on the results of molecular oncology testing.

Virtual molecular tumor board (VMTB): A group of people that col-
laboratively share expertise (eg, pathology, informatics, genetics,
oncology) across multiple institutions using conference calls and/or
online interfaces to provide assertions based on the results of de-
identified molecular oncology testing.

Evidence: Literature or other primary scientific source that supports an
assertion about a genetic variant.

Assertion: A statement pertaining to the clinical relevance of a variant
that is supported by genomic evidence.

Classification: The assignment of a genetic variant into an organized
grouping using criteria determined by various guidelines outlined by
governing professional associations.

Next-generation sequencing (NGS): A broad term to describe many
modern genomic sequencing techniques that incorporate a high
throughput of data and massive parallel sequencing.

Precision oncology: The practice of understanding and treating cancer
based on the presence or absence of actionable mutations and/or
biomarkers within a patient tumor.

Immunohistochemistry (IHC): A protein staining technique used to
determine expression characteristics of tissue by using antibodies to
selectively illustrate the presence of specific proteins in tissue.

Fluorescent in situ hybridization (FISH): A technique that uses fluo-
rescent probes to illustrate their position or abundance in the genome
at a single-cell level.

VMTB case submission: The act by which a de-identified patient case
is recommended for interpretation in a VMTB. Many case submission
processes are facilitated by virtual means to ensure adequate in-
formation is provided by the requester. As an example, we have
provided a link to the Vanderbilt-Ingram Cancer Center’s Hereditary
and Oncologic Personalized Evaluation Molecular Tumor Board Case
Submission Portal (https://redcap.vanderbilt.edu/surveys/index.php?
s=FHWRAXM3T7).

Health Insurance Portability and Accountability Act (HIPAA) compli-
ance: Protection of identifiable patient information by de-identification
and sharing only the information that is relevant to interpreting ge-
nomic data as outlined by the HIPAA of 1996 (https://www.govtrack.
us/congress/bills/104/hr3103).

Predisposing: Characteristic of a mutation that increases the risk of
developing a specific disease.

Diagnostic: Characteristic of a mutation that is associated with
a specific disease or subtype of a disease.

Prognostic: Characteristic of a mutation that is associated with a fa-
vorable or unfavorable clinical outcome.

Predictive: Characteristic of a mutation that is associated with a pre-
dicted response to a specific therapy.

Oncogenicity: The ability of a genomic variant to drive development of
cancer.

Actionability: Characteristic of a variant that informs a therapeutic
direction whether by describing a therapeutic target or by informing
the diagnosis or prognosis in a way that alters treatment options (Carr
TH, McEwen R, Dougherty B, et al: Nat Rev Cancer 16:319-329,
2016).

Artificial intelligence (AI): A term used to describe computationally
driven logic; includes concepts such as natural language processing
and machine learning.

Natural Language Processing (NLP): A branch of AI techniques that
use human readable text as logic-based matching criteria and/or
machine learning criteria.

Machine learning (ML): A branch of AI techniques that logically or
algorithmically assign a set of rules to a data set to allow the computing
system to function with more accuracy.
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