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ABSTRACT  

Data from ChIP-seq experiments can derive the genome-wide binding specificities of 

transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-

seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on 

recursive, thresholded entropy minimization. This approach, while obviating the need to 

compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, 

quantifies the strengths of individual binding sites based on computed affinity, and detects 

adjacent cofactor binding sites that coordinate with the targets of primary, 

immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based 

position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor 

motifs for 127 TFs, and revealed 6 high-confidence novel motifs. The reliability and accuracy 

of these iPWMs were determined via four independent validation methods, including the 

detection of experimentally proven binding sites, explanation of effects of characterized 

SNPs, comparison with previously published motifs and statistical analyses. We also predict 

previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs 

constitute a powerful tool for predicting the effects of sequence variants in known binding 

sites, performing mutation analysis on regulatory SNPs, and predicting previously 

unrecognized binding sites and target genes.  

INTRODUCTION 

Transcription factors (TFs) interact with regulatory elements in genes to mediate positive or 

negative regulation of tissue- and stage-specific expression (1, 2). TFs either directly bind to 

DNA by recognizing specific sequence motifs, or indirectly interact as partners (or cofactors) 

of sequence-specific TFs (3). Interactions between these two types of TFs, as well as 

between sequence-specific TFs, abound across the whole genome (3, 4). For instance, NF-

Y extensively coassociates with FOS over all chromatin states, and CTCF extensively 

colocalizes with cohesins consisting of SMC1/SMC3 heterodimers and two non-SMC 

subunits RAD21 and SCC3 (5, 6). The genome-wide distributions of both types of bound 

TFs have been analyzed by sequence analysis of immunoprecipitated chromatin (ChIP-seq) 

(7). ChIP-seq can identify the repertoire of binding site sequences in a genome, and often 

pull down binding sites of coregulatory cofactors. 

Sequence-specific TFs either recognize contiguous sequence motifs, or form 

homodimeric or heterodimeric structures that contact half sites separated by gaps that 

together comprise bipartite binding sites (8). Although generally the binding sequences of 

TFs are well conserved, significant variability at most positions of their binding motifs 

characterizes most TFs. Information theory-based position weight matrices (iPWMs) can 

quantitatively and accurately describe these base preferences. A contiguous iPWM is 



3 

 

derived from a set of aligned binding sites using Shannon information theory and a uniform 

background nucleotide composition (9, 10). This approach may be more appropriate for 

defining binding sites than Relative Entropy because the contacts between the TF and the 

nucleotides do not depend on the background genomic composition (10, 11). A bipartite 

iPWM consists of two contiguous, adjacent iPWMs, each corresponding to a half site, 

separated by a range of sequence gaps. The individual information content (Ri) of a TF-

bound sequence, which represents the affinity of the TF-DNA interaction, is the dot product 

between the binary matrix of the sequence and an iPWM of the TF (10). The Rsequence value 

of an iPWM is the mean of the Ri values of all the binding site sequences used to compute 

the iPWM, and represents the average binding affinity (12). Our laboratory previously 

developed the Bipad software to generate bipartite (and contiguous) iPWMs from ChIP-seq 

data (8). 

TF binding motifs have been derived from both experimental evidence and computational 

approaches. Weirauch et al. (13) measured TF binding by octanucleotide microarrays to 

infer sequence specificity from overlapping bound sequences for >1,000 TFs encompassing 

54 different DNA binding domain (DBD) classes. Jolma et al. (14) obtained 830 binding 

profiles representing 411 human and mouse TFs using high-throughput SELEX and ChIP 

sequencing. The oligonucleotide-based approach does not account for variable-length 

spacers in bipartite binding sites, and it may reconstruct potentially incorrect motifs that 

cannot be discriminated from correct binding site sequences. In addition, the set of octamers 

used in the DNA microarrays may not cover all possible binding site sequences (>8 

nucleotides [nt]) recovered in the genome from ChIP-seq, and there is no way to discover 

potential binding sites from TF cofactors. Wang et al. (3) carried out de novo motif discovery 

for 119 human TFs from 457 ChIP-seq datasets using the MEME-ChIP software suite, and 

Kheradpour et al. (15) provided a systematic motif analysis for 427 ChIP-seq datasets of 123 

human TFs using five motif discovery tools. However, these studies did not generate 

bipartite motifs with half sites separated by gaps varying in length; more importantly, the 

derived motifs were only based upon strongest ChIP-seq signal peaks (top 500 or 250 

peaks), effectively eliminating thousands of intermediate or weak binding events and biasing 

the resulting iPWMs toward high-affinity, consensus-like binding sites. This is necessary, as 

the sequences contained in the weakest ChIP-seq peaks may contribute low-complexity, 

likely non-functional sequences (i.e. noise) that can obfuscate the detection of true binding 

motifs. Extreme peak selection bias in the population of sites distorts the binding strengths 

estimated for individual sites (16).  

We developed a motif discovery pipeline, Maskminent, by integrating recursive masking 

and thresholding the maximum number of ChIP-seq peaks into an entropy minimization 

framework. Bipad was modified to incorporate these features, and TF binding motifs were 
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derived and validated for 765 ENCODE ChIP-seq datasets (1275 replicates) consisting of 

207 human TFs. 93 primary and 23 cofactor binding motifs were successfully recovered and 

refined for 127 TFs. Reanalysis of the same data using the masking and thresholding 

techniques revealed many known and previously unreported TF cofactors; however, 

frequently our approach revealed cofactor motifs directly. These primary motifs were 

validated by comparing predicted with experimentally-detected true binding sites, explaining 

effects of characterized SNPs on binding site strengths, and through comparisons to an 

independent motif database.  

MATERIALS AND METHODS 

ENCODE ChIP-seq datasets 

The ENCODE Consortium conducted ChIP-seq assays for human TFs and generated initial 

peak datasets for each replicate of each assay using a uniform peak calling pipeline (7, 17). 

For some assays, these analyses produced optimal and conservative IDR-thresholded 

peaks after applying the IDR (Irreproducible Discovery Rate) framework to the initial 

datasets to improve consistency of motifs obtained from multiple biological replicates. In 

addition, Factorbook (3, 18) also reports motifs from refined datasets (limited to the top 500 

peaks) generated by the SPP peak calling software (19). 

We started with the IDR-thresholded peak datasets, because we found that these data 

are more likely to produce primary or cofactor motifs than the initial (i.e. unprocessed) 

datasets; they contain greater numbers of ChIP-seq peaks (and thus more binding sites) 

than the truncated SPP datasets. The initial, unfiltered datasets were examined if neither 

IDR-thresholded nor SPP datasets were available.  

The Maskminent motif discovery pipeline 

Initially, iPWMs from ChIP-seq reads were derived by entropy minimization with Bipad 

(Supplementary Methods). However, we noted that these iPWMs sometimes exhibited 

cofactor or noise motifs, rather than the expected primary motifs. In order to improve 

detection of primary motifs, the Maskminent software, which implements a generalization of 

the objective function used in Bipad, enables new motif discovery by recursively masking 

sequences detected by previous analyses of a ChIP-seq dataset while defining thresholds 

for inclusion of the maximum number of top peaks to eliminate peaks with lower signal 

intensities whose inclusion can result in emergence of noise over primary or cofactor motifs 

(Supplementary Methods). Multiple ChIP-seq datasets from distinct cell lines for the same 

TF, if available, were examined for enriched sequence motifs to assess whether this 

approach was reproducible, and discover tissue-specific sequence preferences between 

these sources. 
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This masking technique, which contrasts with the likelihood approach used by MEME (20), 

provides a means of discovering additional conserved motifs adjacent to primary TF binding 

sites within the same datasets. The sequences detected by motifs found in previous 

iterations are masked and the next lowest entropy motif is derived. The coordinates of all the 

predicted binding sites in a dataset scanned with prior iPWMs are recorded and skipped in 

the subsequent reanalysis. The specified parameters include the length of the motif, number 

of Monte Carlo cycles used in entropy minimization, a motif masking file for recursion, and 

for bipartite binding sites, the lengths of the left and right motifs and the gap length range 

between the half sites (Supplemental Methods). Once a motif is generated, another program, 

Scan, is used to detect binding sites in a DNA sequence and determine their respective 

information contents, or binding strengths.  

To eliminate noisy patterns that suppress the expected TF binding motifs due to ChIP-seq 

peaks with low signal strengths (i.e. read counts), the dataset is truncated based on signal 

strengths as follows (Figure 1). First, all the peaks are ranked in the descending order of 

strengths, and the top 200 peaks are selected. If the iPWM derived from the top 200 peaks 

exhibits the primary/cofactor motif, then the minimum threshold peak strength is contained 

within the range from the strength of the 200th peak (i.e. the initial value of �) to the peak 

with the weakest signal (i.e. the initial value of �). A half-interval search iterated over sets of 

progressively weaker peaks narrows this range until the number of peaks contained in the 

range is ≤500. The value of � is the threshold peak signal strength above which the top 

peaks can still produce the primary/cofactor motif. The minimum threshold obtained for � (i.e. 

the final value of �) defines the approximate peak set containing the maximum number of 

top peaks that can produce the primary/cofactor motif.    

Binding site motif validation 

The methods used to evaluate the accuracy of our iPWMs include: 

1) To detect experimentally proven binding sites in known target genes, derived iPWMs were 

used to evaluate the Ri value of each site; 

2) To predict changes in binding site strength, characterized variants were evaluated with 

the corresponding iPWMs. The predicted changes were compared with experimentally 

supported effects on TF binding or gene expression; 

3) The iPWMs were compared with the corresponding annotated motifs in the CIS-BP 

database (13) based on their normalized Euclidean distances; 

4) To distinguish true binding motifs from noise motifs, we delineated the relationship 

between Ri values of binding sites discovered by the iPWM and their corresponding binding 

energy (i.e. higher Ri values have lower binding energies) (Supplementary Methods). 

Primary/cofactor motifs are expected to demonstrate this relationship, whereas noise motifs 
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are not; that is, for primary/cofactor motifs, the linear regression fit between Ri values and 

binding energy are expected to have slopes well below 0 which is the expected slope for 

noise motifs. After applying F-tests to evaluate this relationship, F values for the two 

categories of motifs were compared using a Mann-Whitney U test. 

RESULTS 

The derived iPWMs displayed primary motifs for 93 TFs (Supplementary Table S1), as well 

as 23 cofactor motifs for 127 primary TFs (Supplementary Table S2). We also describe 6 

high-confidence novel motifs that have not been previously annotated in these ChIP-seq 

data (Supplementary Table S3). 

The initial iPWMs directly exhibited primary motifs for 76 TFs and 18 cofactor motifs for 

107 primary TFs. Thresholding the datasets revealed 31 primary motifs and 14 cofactors for 

38 primary TFs. We used the masking technique to discover an additional 4 primary motifs; 

7 cofactor motifs were also found in 21 datasets (Supplementary Tables S1 and S2).  

For each TF ChIP-seq dataset with a derived primary motif (n=367), we determined the 

false positive detection rate from the null Ri distribution, which is approximately Gaussian 

(12). The iPWM was used to scan for binding sites in a random 10,000 nucleotide sequence 

that conserved the mono- and dinucleotide composition as the dataset (Supplementary 

Table S1). The means of all null distributions range from -97.5 to -12.3 bits with standard 

deviations from 6.9 to 22.5 bits. The probabilities of observing a potentially functional binding 

site, i.e. with Ri>0, in these sequences range from 1.2E-7 to 0.06. 

Similarly, the independence of contributions of each position in a binding site to the 

overall information content was analyzed for one iPWM of each primary motif. The total 

mutual information, which measures the interdependence between individual positions in the 

same binding site, was determined by summing the pairwise mutual information at each 

position (Supplementary Table S1). Then, the percentage of the total mutual information 

relative to the average information, Rsequence, was determined. For 83 TFs (~89.2%), <10% of 

the information present in the iPWM is dependent, and for 62 TFs (~66.7%), <5% is 

dependent. Neglecting the interactions between positions introduces a minimal error into the 

calculation of Ri values of binding sites, and would be expected to have little impact on 

assessment of the mutations in these sequences. 

Primary binding motifs 

Contiguous iPWMs. Correct iPWMs were successfully derived for 65 TFs with contiguous 

binding motifs, which are concordant with published descriptions of these motifs (3). All of 

these motifs can be characterized as degenerate and do not correspond to published 

consensus sequences. Consensus sequences miss TF binding sites of weak or intermediate 
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strength (16). We determined the frequencies of such sequences appearing on a genome 

scale for 10 TFs by counting the peaks containing these sequences in their respective 

datasets (Figure 2 - panel A). Surprisingly, only 0.015%-7.3% of all peaks contain binding 

sites with these sequences, demonstrating that these sites are extremely rare in ChIP-seq 

datasets. Thus, intermediate and low-affinity TF-DNA interactions are the most prevalent in 

vivo and are able to regulate gene expression (21). 

Bipartite iPWMs. For 19 TFs, bipartite iPWMs were successfully derived, and were in 

agreement with previously reported motifs. The following examples illustrate key insights that 

can be taken from bipartite modeling: 

1) El Marzouk et al. (22) demonstrated that ESR1 is able to recognize binding sites with 

half sites separated by nucleotide spacer lengths from 0 - 4nt, in which sites containing a 3nt 

spacer are most common and have the highest binding affinities. We allowed the spacer 

length to vary from 0 to 5nt in bipartite iPWMs derived from the T47D cell line data. The 

resultant iPWMs show the documented predominant sequences and are palindromic. The 

bipartite iPWM exceeds the average information content of the corresponding contiguous 

iPWM prepared from the same dataset, and the dominant gap between half sites is 3nt 

(Figure 2 - panel B). Nevertheless, 333 binding sites (~9%) in this iPWM exhibit a 5nt spacer, 

implying that ESR1 may be capable of binding to sites that were not previously detected. 

The symmetry between the half sites exhibited by the bipartite iPWMs suggests that dimeric 

ESR1 may bind a narrow range of sequences with similar half site affinities. 

2) The palindromic predominant sequence of the AP2 family is 5’-GCCN3GGC-3’, and 

other binding sequences confirmed in an in vitro binding-site selection assay include 5’-

GCCN4GGC-3’ and 5’-GCCN3/4GGG-3’. Another binding site 5’-CCCCAGGC-3’ was also 

found in the SV40 enhancer (23). The spacer lengths in the bipartite iPWMs for AP2A and 

AP2C range from 2 – 4nt, which is representative of the genome-wide pool of true binding 

sites (Figure 2 – panel B). We also noted that the two outermost positions are the most 

variable, and that adenine (instead of the consensus guanine) can also appear at the first 

position of the right half site. These bipartite iPWMs exhibit similar conservation levels 

across all the individual positions, suggesting that these binding sites of the two AP2 

members may exhibit similar degrees of binding affinity, though iPWMs can recognize 

different sequences. 

3) The predominant spacer length separating half sites recognized by STAT1 is 3nt; 

however, previous reports describe sites with a 2nt gap, but not those separated by 4nt (24). 

However, the STAT1 bipartite iPWM is based on 1709 binding sites (~18%) with a 4nt 

spacer, with most half sites separated by 2 or 3 nt (Figure 2 – panel B). The left- and 
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rightmost nucleotides are nearly invariant, whereas the inner 2 nucleotide contacts in each 

half site are variable. 

4) NFE2 and BACH1 heterodimerize with the MAF family (MAFF, MAFG and MAFK), and 

recognize two types of bipartite palindromic motifs, defined by the predominant binding sites 

TGCTGA(C)TCAGCA and TGCTGA(CG)TCAGCA (25). The previously reported binding 

motifs (3) are contiguous, and do not account for the dimeric interaction that gives rise to this 

bipartite binding pattern. The bipartite iPWMs indicate that the inner 6 positions surrounding 

the dominant 1nt spacer exhibit higher information contents than the outer 6 positions 

(Figure 2 – panel B).  

Comparing iPWMs for the same TF in distinct cell lines. Cell-type-specific differences 

between iPWMs of the same TF were evident for certain contiguous and bipartite motifs. For 

instance, among the three contiguous iPWMs of ESR1 derived from the ECC1 steroid-

responsive endometrial cell line, conservation levels in the respective half sites are 

asymmetric, whereas the average information of these half sites are much more symmetric 

in iPWMs derived from T47D, a breast tumor cell line (Figure 3 – panel A). For the TFs 

MAFF and MAFK, the discrepancy between the bipartite iPWMs from K562 and HepG2 cells 

is evident: the outer 6 positions show a greater degree of conservation than the internal 6 

positions in HepG2, but in K562 the opposite trend is illustrated (Figure 3 – panel A). The 

MAFK iPWM derived from ChIP-seq data of IMR90 cells resembles the HepG2 iPWMs, 

whereas the iPWMs from HeLa-S3 and H1-hESC datasets resemble the K562 iPWMs. The 

compositions of binding sites (i.e. different target genes for the same TF in different tissues) 

account for these differences because TFs can display distinct cell-type-specific DNA 

sequence preferences (26). Consistent iPWMs between replicate datasets makes it unlikely 

that the skewed base conservation between ChIP-seq datasets for the same TF in different 

cell lines arises from sampling differences; however, this possibility cannot be excluded. 

Cofactor binding motifs 

Discovery of the binding motif of a cofactor in the same ChIP-seq dataset for a primary TF 

implies that the two TFs transcriptionally co-regulate this set of common target genes. This 

could be accomplished either by formation of a physical complex on the promoter, or by 

synergistic or antagonistic cis-regulatory effects. De novo motif discovery from ChIP-seq 

datasets provides an effective approach for confirming or predicting statistically significant 

TF interactions on a genome-wide scale; by contrast, the abundant, existing literature 

overwhelmingly documents gene-by-gene evidence about such interactions which constrains 

arguments supporting their generalizability. Figure 4 illustrates TF-cofactor interactions 

revealed by the Maskminent pipeline. 
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Confirmation of known cofactors. The derived iPWMs confirmed genome-wide interactions 

between 22 cofactors and 102 primary TFs (Table 1), which were supported by the previous 

studies (3, 5, 6, 15, 27-93) . For example, the interaction between SP1 and multiple 

members of the ETS and AP1 families has been well characterized (94–99). ELK1 and SRF 

can recruit each other to form a ternary complex on CArG-ETS elements (100). TEAD-AP1 

cooperation with SRC coactivators drives downstream gene transcription to regulate cancer 

cell migration and invasion (101), and STAT1, STAT2 and IRF9 form a heterotrimer that 

regulates transcription of genes containing IFN-stimulated response elements (ISREs) (102). 

Consistent with previous reports (15), the existence of a YY1-THAP1 complex is predicted 

from co-segregation of their binding motifs in the K562 dataset of THAP1. Similarly, we 

predict that the SOX2-OCT4 complex colocalizes with BCL11A, similar to Wang et al (3). A 

DNA-binding complex consisting of GATA1, TAL1, E2A, LMO2 and LDB1 is present in the 

erythroid cell lineage (103). Based on the proximity and coprecipitation of these binding 

sequences, we and others (3, 104) find that this complex, in which GATA1 and TAL1 contact 

DNA, coordinately binds with TEAD4 and other non-DNA binding proteins (P300, PML, 

RCOR1 and TBL1XR1). The GATA1-TAL1 and SOX2-OCT4 complexes emerged from the 

datasets of TAL1 and OCT4 as primary motifs, respectively, which implies that the formation 

of the two complexes being necessary for binding of TAL1 and OCT4. 

Discovery of novel cofactors. Maskminent revealed a number of previously unrecognized 

cofactor motifs (n=10) for 46 primary TFs (Table 1), which supports novel TF cobinding and 

interactions. This includes possible associations between the IRF and RUNX families, and 

their further cooperation with BCL11A, MEF2A, MEF2C, CEBPB, EED and P300 in 

GM12878 cells (Table 1; Figure 4). Similarly, the TEAD-AP1 complex is predicted to recruit 

MYC, STAT3 and GATA2 in multiple cell lines. The finding that NR2F2 and STAT5A motifs 

are in close proximity to sequences recognized by the GATA1-TAL1 complex suggests 

these factors may coordinately regulate target genes. Many cofactors were also discovered 

among datasets of non-sequence-specific primary TFs, which is consistent with the 

possibility that these primary TFs are recruited to gene promoters through their association 

with DNA-binding cofactors (Table 1).  

Cofactor binding sites. To validate the predicted cobinding between cofactors and primary 

TFs, we determined the intersite distance distributions by scanning the individual ChIP-seq 

intervals with the derived iPWMs for each (Figure 5; Supplementary Table S4). A minimum 

information threshold was applied to the Ri values of predicted binding sites in order to 

remove the relatively large number of weak binding sites that are likely to be low-complexity 

sequences (e.g. Rsequence [or 0.5 * Rsequence, if too many cofactor binding sites were eliminated 

at the higher threshold]). The SOX2-OCT4 complex was used as a primary negative control, 
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as it is primarily expressed in the H1-hESC cell line and is unlikely to be a cofactor for 

primary TFs in other cell lines. A large percentage of peaks have short intersite distances 

between the primary TF and the corresponding cofactor binding sites (e.g. <20nt), whereas 

there is no such a trend for the negative control sequences and the primary TF. The same 

difference is observed between the distribution for the documented TEAD4-AP1 pair and for 

the negative control. Consistent with previous reports (4), the binding sites of cofactors and 

primary TFs in peak datasets were physically overlapped between the IRF and RUNX motifs, 

between the TEAD4 and AP1 motifs, and between USF and ATF3 (AP1) recognition motifs. 

Tissue-specific preferences of predicted cofactors relative to primary TFs. Several cofactors 

were recurrently associated with different primary TF partners, notably in specific cell lines. 

One possible explanation is that these cofactors are coordinately regulated with different 

primary TFs preferentially in specific cell types. For example, the datasets of 25 primary TFs 

in which the IRF family was discovered as a cofactor were all derived from lymphoblastoid 

(e.g. GM12878) cell lines, with 4 exceptions (Table 1). Regulation by the IRF family is central 

to B-lymphocyte expression programs (105). All the datasets of 11 primary TFs from which 

the GATA and GATA1-TAL1 motifs emerged as cofactors were derived from K562 

erythrocytic leukemia cells (Table 1), which is consistent with the activation role that the 

GATA family exhibits in hematopoietic lineage gene expression (106, 107). Similarly, FOXA 

family members bind to the same sequences as 7 primary TFs in the HepG2 cell line derived 

from hepatocellular carcinoma cells (Table 1), which is consistent with the fact that FOXA 

proteins regulate the initiation of liver development (108). Datasets of GATA3 and P300 from 

the T47D breast cancer cell line are also linked to FOXA. Another TF family known to be a 

key factor regulating hepatocyte differentiation and liver-specific functions is HNF4 (109), 

which was discovered as a cofactor of SP1 in a HepG2 dataset. SOX2 and the SOX2-OCT4 

complex were unveiled as cofactors only in datasets of 3 primary TFs from the H1-hESC cell 

line representing embryonic stem cells (Table 1), which is supported by the requirement for 

SOX2, OCT4 and NANOG to maintain pluripotency (110). Interestingly, all the datasets 

(n=12) in which YY was revealed as a cofactor were from K562 cells, with one exception 

(Table 1). Unlike the GATA TFs, the YY family is ubiquitously distributed and not known to 

play an especially central role in erythroid lineage development, although YY1 is known to 

act as a developmental repressor of the ε-globin gene along with GATA1 (111). 

Not surprisingly, the SP family was found to be capable of interacting with the maximum 

number of TFs, which is consonant with its role in constitutive transcriptional activation. 

Similarly, the ubiquitously expressed AP1 interacts with 10 TFs in multiple cell lines, and 

these interactions do not show any preference in cell type. 
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A number of primary TFs exhibit an extensive capability of interacting with multiple 

cofactors in different tissues. The unique distribution of these cofactors across multiple cell 

lines suggests the tissue-specific functions of the primary TFs. For instance, TEAD4 was 

found to coimmunoprecipitate with GATA1-TAL1 in K562 cells, NRSF in A549 cells, FOXA in 

HepG2 cells, and AP1 in multiple cell types. Cofactors of P300 include IRF-RUNX in 

GM12878 cells, SP in H1-hESC cells, AP1 and CEBPB in HeLa-S3 cells, FOXA in HepG2 

and T47D cells and GATA1-TAL1 in K562 cells. Cosegregation analysis revealed 

interactions between BCL11A and IRF-RUNX in GM12878 cells, and SOX2-OCT4 in H1-

hESC cells. STAT5A and TBL1XR1 cosegregated with members of the IRF family in 

GM12878 cells and with GATA1-TAL1 in K562 cells. 

Discordance between iPWMs derived from the same ChIP-seq assay. We noticed some 

discrepancies between IDR-thresholded datasets and SPP datasets from the same ChIP-

seq assay. For example, for the primary TF BRG1, iPWMs exclusively from SPP datasets 

exhibit motifs of GATA1 and AP1; IDR-thresholded BRG1 data produced only noisy low 

information content motifs. We also noticed that the motifs derived from different biological 

replicates of the same ChIP-seq assay were sometimes inconsistent. One replicate of the 

TEAD4 ChIP-seq assay from the A549 cell line revealed only the NRSF binding motif, 

whereas both the cofactor AP1 and the primary motif were derived from the other replicate.  

Novel binding motifs 

We uncovered 6 high-confidence novel motifs that have not been previously annotated 

(Figure 3 – panel B). The “NM1” motif was considerably enriched in the datasets of BAF155 

and BRG1 (which do not bind DNA directly) from HeLa-S3 cells and the “NM2” motif was 

highly conserved in the datasets of BCL11A and NANOG from H1-hESC cells. The “NM3” 

motif was revealed in the ESRRA and SREBF2 datasets from GM12878 cells, in the MAX 

dataset from HCT116, in the CREB1 and GTF3C2 datasets from K562, and in the non-DNA-

binding RCOR1 dataset from IMR90 cells. The Euclidean distances between these novel 

motifs and primary motifs are dissimilar, ranging from 3.1 to 3.4 bits/nt. The “NM4”, “NM5” 

and “NM6” motifs were discovered in the datasets of GATA3, MXI1 and FOSL1 from MCF-7, 

SK-N-SH, and H1-hESC cells, respectively, with distances ranging from 2.9 to 3.4 bits/nt.  

We investigated whether these novel motifs were enriched in hallmarks of open 

chromatin, based on the co-occurrence with DNase I hypersensitive sites and near H3K4me 

and H3K27ac histone modifications (112). After scanning the complete genome with these 

iPWMs, the proportions of sites detected within these corresponding ENCODE chromatin 

tracks were determined for the respective cell lines (Table 2). These proportions (5%-35%) 

are consistent with previously reports of binding sites for other TFs (113). The frequencies of 

sites detected with the NM2 and NM6 motifs within the H3K4me1 and H3K27ac peaks are 
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significantly higher than those found after intersection of each NM binding site with the 

H3K4me2 and H3K4me3 tracks, respectively. The co-occurence of NM2 and NM6 with the 

H3K4me1 and H3K27ac epigenetic marks supports the assignment of these motifs as 

components of transcriptional enhancer elements, because these histone modifications are 

present in nucleosomes flanking enhancer elements (114). Additionally, the co-occurence of 

these two motifs within DNase I hypersensitive intervals exhibit the highest among all the 6 

motifs. The remaining motifs could represent binding motifs of currently unknown TFs or 

other non-annotated functional elements. 

Binding site motif validation 

Detection of true binding sites with iPWMs. 803 experimentally-confirmed, previously 

published binding sites were verified for the 93 TFs whose primary binding motifs had been 

identified (Supplementary Table S5). We detected these sites with the derived iPWMs by 

scanning promoters of known TF target genes for binding elements with positive Ri values. 

There was complete concordance between these true binding sites and those detected with 

the iPWMs, both in terms of their locations and relative strengths. For example, an EMSA 

analysis of the SERPINA3 promoter proved that the nucleotide sequence starting at 

GRCh38(chr14:94612260) contains a stronger binding site of STAT1 than the one starting at 

GRCh38(chr14:94612291) (Supplementary Table S5) (115); the binding site (5'-

TTCTGGTAA-3' with Ri = 9.02 bits; Row 781) detected by the bipartite iPWM is indeed 22.13 

(or 4.38) fold stronger than the other site (5'-TTCTCGGA-3' with Ri = 6.89 bits; Row 782) 

detected in this promoter. 

Correspondence between functionally characterized SNPs and changes in information 

content. Based on the change in the Ri value of a binding site, the effect of a SNP on the 

binding site strength can be predicted with iPWMs (10,12). For 153 SNPs within the binding 

sites of 29 TFs, we determined Ri values of the variant sequence for the corresponding 

iPWM and compared the predicted consequence to observed TF binding, and if available, 

published changes in expression (Supplementary Table S6). For 130 SNPs (~85.0%) 

affecting binding sites of 27 TFs, the predictions of the iPWMs and the experimental 

observations are completely concordant. For 16 SNPs (~10.5%) affecting binding sites of 10 

TFs, the predicted and observed experimental findings are concordant, but the extents of 

these changes differ (e.g. TF binding is predicted to only be weakened, but binding or 

expression was completely abolished). For 7 SNPs (~4.6%) altering binding sites of 3 TFs, 

the predicted and observed experimental changes were discordant. iPWMs for 2 (CEBPB 

and SP1) of these 3 TFs were validated for other SNPs. 
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Comparison between iPWMs and other binding motifs. Binding motifs of eukaryotic TFs in 

the CIS-BP database were previously reconstructed from oligonucleotide binding selection 

assays (13); these motifs represent another type of ground truth reflecting the genuine 

sequence preferences of these TFs. For 133 TFs, we quantitatively compared the iPWMs 

with these motifs by determining the normalized Euclidean distances between them, and 

classified the distances into three categories. We observed that the iPWMs derived in this 

study and the reconstructed motifs are nearly identical (<1 bit/nt) for 75 TFs, or only differ at 

1 or 2 positions (1-2 bits/nt) for 18 TFs. The discovery of cofactors was the predominant 

explanation for large distances (>2 bits/nt) for 39 of these TFs. 

Statistical analyses on iPWMs. To distinguish true binding motifs from noise motifs, the 

relationship between Ri values and binding energy was evaluated by performing F tests on 

all binding sites in all of the contiguous iPWMs that we derived (674 primary/cofactor, 312 

noise). The F values are plotted as a histogram to illustrate probability density distributions 

(Figure 6; data available in Supplementary Table S1 and S2). The histogram shows that 

most F values between 0 and 100 were significantly enriched for noise motifs. In general, the 

F values of primary/cofactor motifs significantly exceed those derived from noise. The 

primary/cofactor motif and noise motif distributions are different (Mann-Whitney U test; p = 

3.1E-57 at 1% significance level). We note that only primary and cofactor motifs exhibit F 

values >1000, which comprise 37.2% (251 of 674) of all iPWMs. The iPWMs with F values 

<1000 remain valid based on the other criteria described above.  

DISCUSSION  

In this study, we derived and validated TF binding motifs from ChIP-seq datasets using 

an information theory-based approach, also revealing TF cofactor binding sites and other 

novel motifs. The primary TF motifs were validated by comparison with motifs derived 

independently from binding studies, by analysis of gene variants known to alter TF binding 

affinities, and by comparing the locations of binding sites predicted by iPWMs with those of 

true sites previously determined in published binding and expression studies. In addition to 

contiguous iPWMs, bipartite iPWMs with variable-length spacers were also derived. These 

iPWMs more precisely reflect the binding behavior of dimeric TFs, as they incorporate 

intermediate and often weak binding sites that are often excluded from consensus 

sequence-based (strong) binding site sets (3). This enables these iPWMs to accurately 

quantify binding site strengths across a broad range of affinities (Supplementary Table S5). 

To test this, the iPWMs were applied to mutation analyses of regulatory SNPs 

(Supplementary Table S6). We have recently used this approach to identify and prioritize 

variants affecting TF binding in 20 risk genes of 287 hereditary breast and ovarian cancer 
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patients (116) and 7 genes from 102 such patients (117). In present study, the iPWMs were 

also used to delineate known and novel TF-cofactor interactions. 

TF binding sites across the genome have been predicted from promoter accessibility 

analyses with high-throughput DNase-seq assays. For each of 20 TFs, Yardımcı et al. (118) 

obtained a set of true binding sites by intersecting ChIP-seq peaks with the 50,000 strongest 

binding sites predicted by JASPAR and TRANSFAC PWMs in the genome. The FLR 

(Footprint Log-likelihood Ratio), which is defined as the logarithm of the ratio between 

probabilities that a DNase I footprint is produced by either a true binding site or a 

background sequence, was determined at these sites. We attempted to detect these true 

sites using the derived iPWMs. For these 20 TFs, all of these sites (ranging from n=31 to 

21550, depending on the TF) were successfully detected by the iPWMs (Ri > 0). By contrast, 

the FLR identified 35%-85% of the verified binding sites (Supplementary Table S7). As weak 

binding sites tend not to generate footprints and thus not to be discovered by DNase-seq, 

the expectation is that the sites detected by DNase-seq would be stronger than those that 

evade detection. In fact, this trend was observed for only 10 TFs and the average strengths 

of these classes of these binding sites were not significantly different. 

In the Maskminent pipeline, the weak peaks below the threshold signal intensity do not 

necessarily contain weak or are missing binding sites; in fact, the distribution of Ri values of 

binding sites in these bottom peaks is similar to that in the top peaks used to derive the 

iPWM (Supplementary Methods). Thresholding the dataset is required in order to ensure that 

the iPWM for the primary motif consists of binding sites from as many peaks as possible, 

while preventing alternative motifs from dominating the objective function used in 

Maskminent. 

We also compared results produced by the Maskminent pipeline with other motif 

discovery tools from two perspectives of revealing primary and cofactor binding motifs 

(Supplementary Table S8). MEME-ChIP was previously used to derive motifs for 457 ChIP-

seq datasets (119) and SeqGL (120) was used to analyze 105 datasets. Among the 

sequence-specific TFs (n=98) investigated by both tools, Maskminent and MEME-ChIP 

discovered primary motifs for 80 (~81.6%) and 92 (~93.9%) TFs, respectively. Among the 59 

TF datasets analyzed by Maskminent, MEME-ChIP, SeqGL and HOMER (121), primary 

motifs were revealed for 45 (~76.3%), 51 (~86.4%), 49 (~83.1%) and 47 (~79.7%) datasets, 

respectively. The cofactor motifs that Maskminent found (which MEME-ChIP and SeqGL 

failed to detect) primarily comprise the SP family. Since MEME and SeqGL discriminate 

binding sites from background sequences using nucleotide frequencies computed from all 

input sequences, binding motifs with compositions similar to the background may fail to be 

discovered, such as the SP motif; in contrast, Maskminent does not rely on background 

compositions and will always return the lowest entropy motif. While MEME-ChIP and SeqGL 
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revealed a greater number of cofactor motifs, selecting only the top 500 or 2000 peaks 

increases the likelihood that those cofactors appeared by chance. This is because MEME-

ChIP and SeqGL were configured to report multiple motifs, whereas the main objective of 

Maskminent was to discover primary motifs (i.e. if the initial iPWM derived from a dataset 

exhibits the primary motif, the masking and thresholding techniques will no longer be used, 

unless it is explicitly masked). Finally, the ability of Maskminent, MEME-ChIP, SeqGL to 

reveal binding motifs was compared on the 105 datasets (120). Each tool discovers cofactor 

motifs that others do not recognize.  

Arvey et al. (26) trained support vector machines (SVMs) that use flexible k-mer patterns 

to capture DNA sequence signals more accurately from 286 ChIP-seq experiments than 

traditional motif approaches, and these SVMs can also integrate histone modifications and 

DNase accessibility to significantly more accurately predict TF occupancy than simpler 

approaches. However, the SVM approach does not provide any insight into binding strength. 

Even though accessibility constrains the number of binding sites and increases the accuracy 

of binding site detection, it is not possible to compare binding site strengths once the 

designated sites are combined with DNase I hypersensitivity profiles and other chromatin 

accessibility marks.  

In fact, the number of TFs for which cofactor motifs were revealed exceeds the number of 

TFs whose primary binding motifs were discovered, partially because only cofactor motifs 

can be found in the datasets of TFs which exhibit little or no sequence specificity (e.g. 

CCNT2, INI1 and P300). For 11 primary TFs, the binding site sequences were extremely 

variable; that is, the overall conservation levels of their binding motifs contain less 

information than noisy, low complexity sequences or cofactor motifs. For 18 primary TFs 

associated with cofactors, which themselves physically contact DNA, the primary TF motif 

was not enriched. The inability of the software to discover such primary motifs is a limitation 

of this approach. Interactions between the primary TFs and a subset of the cofactors which 

are known to cooperate with them were detected, since the association has to occur with a 

prevalence sufficient to produce a recognizable motif (usually >0.5 bit/nt over the entire site). 

Nevertheless, the algorithm may not find cofactors with weakly conserved motifs or those 

that overlap with other conserved motifs.  

While unable to discover cofactors nor identify bipartite motifs of variable spacing, the 

oligonucleotide microarray technique adopted by Weirauch et al. (13) and Jolma et al. (14) 

theoretically is able to determine binding specificities for all the sequence-specific TFs, 

because contiguous binding sites of TFs are reconstructed from overlapping oligonucleotide 

sequences by directly detecting complexes with the TF. This eliminates interference of noisy 

sequences or cofactors which may emerge as false minimum entropies using our method.  



16 

 

The Maskminent pipeline can be applied to other ChIP-seq data not included in ENCODE. 

The quality control criteria we described are capable of ensuring that the user-built iPWMs 

are accurate and can be used for binding site detection. The first and second criteria are 

particularly important, because they provide a straightforward assessment of iPWM 

performance. The recursively thresholded feature is crucial for guaranteeing that the 

discovered cofactors do not appear by chance, because the greater the number of peaks 

from which a cofactor is derived, the higher the confidence that the cofactor indeed interacts 

with the primary factor.  

In summary, we comprehensively investigated and implemented a new approach to 

define TF binding specificities based on the ChIP-seq TF data that ENCODE has released. 

This allowed us to mine and quantify both known and previously unrecognized TF binding 

motifs and cofactor interactions on a genome scale. This information expands the granularity 

of the current knowledge on TF interaction with DNA and points out potential directions for 

future experimental study on interaction between TFs. 
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FIGURE LEGENDS 

Figure 1. One iteration of the half-interval search used to refine the threshold peak strength. 

All peaks in the dataset are sorted in the descending order of signal strengths. � is the 

smaller bound of the current range containing the minimum threshold that can generate the 

primary/cofactor motif, and � is the greater bound (i.e. the current threshold). � and � are 

respectively initialized to the strength of the 200th peak and the strength of the last peak. � 
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is the strength of the peak at the mean (rounding to the nearest multiple of 500) of the 

number of top peaks above � and the number of top peaks above �. ����� , �����, 

����� are respectively the iPWMs derived from the top peaks above �, �, �. 

������� , �����

 is the Euclidean distance between �����  and �����, and 

������� , �����

 is the Euclidean distance between �����  and �����. If 

������� , �����

 is greater than ������� , �����


, ����� exhibits the noise motif and 

the minimum threshold is contained in the subrange from � to �; if ������� , �����

 is 

smaller than ������� , �����

, ����� exhibits the primary/cofactor motif and the 

minimum threshold is contained in the subrange from � to �. When the number of peaks 

contained in the range does not exceed 500, this half-interval search is stopped. The 

approximately minimum threshold that is returned is � of the final range.    

Figure 2. Sequence logos of contiguous (A) and bipartite (B) iPWMs. The TF name, and the 

cell line from which the iPWM was derived, and the number of binding sites that the iPWM is 

based upon are displayed. In (B), each of the first four rows includes a contiguous (left) 

iPWM and a bipartite (right) iPWM of one TF from the same dataset. The last row includes 

the bipartite iPWMs of NFE2 and BACH1. The bipartite search patterns, which are denoted 

by l<a,b>r (l and r are the lengths of the left and right half sites respectively, a and b are the 

minimum and maximum spacer lengths respectively), are 6<0,5>6, 3<2,4>3, 3<2,4>3, 

3<2,4>3, 6<1,2>6 and 6<1,2>6 from top to bottom, respectively.  

Figure 3. Comparison between iPWMs from different cell lines and novel motifs. (A) Each 

row includes sequence logos of two iPWMs of the same TF from two different cell lines. The 

bipartite iPWMs for MAFF and MAFK used the search pattern 6<1,2>6. (B) The high-

confidence novel motifs (“NM1” – “NM6”). The logos of the NM1, NM2 and NM3 motifs come 

from the datasets of BAF155, NANOG and ESRRA, respectively. 

Figure 4. Network graph of TF-cofactor interactions revealed by the Maskminent pipeline. A 

yellow ellipse denotes a cofactor and a white ellipse denotes a primary TF. A hexagon 

denotes a TF family with dash lines connecting its members. For a TF family only members 

for which ENCODE provides peak datasets are shown. A red rectangle denotes a known or 

predicted TF complex with black or blue dotted lines indicating its components, respectively. 

An undirected line denotes the interaction between a primary TF and a cofactor which may 

be a complex or a TF family. A directed line links two cofactors, denoting that in a dataset of 

the starting TF the ending TF was discovered as a cofactor. Black lines denote known 

interactions and blue lines denote the newly discovered interactions. 

Figure 5. Distributions of intersite distances between primary TFs and discovered cofactors 

versus negative controls. The minimum threshold on information contents of predicted 
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binding sites is Rsequence. Each graph illustrates a much higher frequency of short (< 20nt) 

intersite distances between primary TFs and cofactors (blue) compared to the negative 

control (SOX2-OCT4; red).  

Figure 6. F-test results evaluating the relationship between Ri values and binding energy. 

The proportion of F values within the first bin for primary/cofactor motifs is much higher than 

that for noise motifs. A minimum threshold of 1,000 correctly classifies all the noise motifs 

and 37.2% (251/674) of primary/cofactor motifs. 
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Table 1. Cofactors revealed by iPWMs and their corresponding primary TFs. 

Cofactors 
Primary TFs* 

Sequence-specific Non-sequence-specific 

AP1 GATA2, MYC, SRF, STAT3, TEAD4 BAF155, BAF170, BCL3, BRG1, 

P300 

CEBPB  P300 

CTCF ZNF143 RAD21, SMC3 

ETS 

family 

MAX, SRF1, TR4 DIDO12 

GATA 

family 

RUNX12 BRG12, SIRT62 

GATA1-

TAL1 

NR2F22, STAT5A2, TAL12, TEAD42 P3002, PML2, RCOR12, 

TBL1XR12 

FOXA 

family 

ARID3A3, GATA3, GATA43, NFIC3, TCF123, 

TEAD43 

HDAC23, MBD43, P300 

HNF4 

family 

SP13  

HSF 

family 

 PGC1A3 

IRF family ATF12, BCL11A1, CEBPB1, CREM1, ETV61, 

FOXM11, FOXP2, IKZF11, MEF2A1, MEF2C1, 

NFE21, NFKB1, OCT21, RUNX31, STAT12, 

STAT22, STAT31, STAT5A1, TCF71, ZBED11 

EED1, EZH21, MTA31, P3001, 

TBL1XR11 

NFKB  KDM5A4 

NFY FOS, IRF3  

NRSF SP23, TEAD4 SIN3A4 

RUNX 

family 

BCL11A1, CEBPB1, IRF41, MEF2A1, MEF2C1 EED1, P3001 

SP family ATF24, ATF3, CEBPD3, CREB1, CREM1, 

DEAF12, E2F1, E2F4, E2F6, ELF1, ELK1, 

ETS1, FOS, FOSL14, FOXP2, GABPA, 

GATA43, IRF12, IRF3, JUND, KLF132, MAX, 

MITF2, MXI1, MYC, NFE21, NFKB1, NFYA, 

NRF1, NRSF3, OCT21, PAX51, PBX3, RFX5, 

SMAD5, SREBF13, SREBF23, SRF, STAT11, 

SUZ12, TBP, TCF4, TCF72, THAP12, TR4, 

BCLAF1, BRCA1, CBX13, 

CCNT22, CHD1, CHD2, DIDO12, 

EZH2, GTF2B2, HDAC12, 

HMGN32, INI1, KAT2A, 

KDM5B2, P3004, PHF82, PML, 

RBBP5, RCOR13, RPB1, 

SAP302, SIN3A, TAF1, TAF7 
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UBTF2, YY1, ZBED12, ZBTB33, ZBTB7A2, 

ZHX23 

SOX2 NANOG4  

SOX2-

OCT4 

BCL11A4, OCT44  

TEAD 

family 

GATA2, MYC, STAT3  

TFIIIC HSF13, TBP, TCF12 BDP1, BRF1, RPC155, RPC32 

YY family CREB32, IRF92, PTTG12, TEAD22, THAP12 DDX202, ID32, ILK2, KDM5A4, 

PTRF2, PYGO22, TAF72 

USF ATF3, NFE21  

ZBTB33 ETS11 BRCA1 

ZNF143 ETS1, DEAF12 SIX5 

 

* The underlined or normal font denotes known or newly discovered interactions between 

cofactors and primary TFs, respectively.  
1,2,3,4 The cofactor was revealed in the GM12878-related, K562, HepG2 or H1-HESC cell 

lines, respectively. Otherwise the cofactor appeared in other or multiple cell lines. 
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Table 2.  Percentages of binding sites from novel motifs (NM) that overlap DNase I 

hypersensitive intervals and/or regions of specific histone modifications. 

Novel motif 
ENCODE Genome Browser Track 

DNase I HS H3K4me1 H3K4me2 H3K4me3 H3K27ac 

NM1✝ 4.50% 17.63% 15.52% 16.23% 11.44% 

NM2✝ 7.06% 33.63% 14.39% 9.61% 34.05% 

NM3✝ 4.21% 21.19% 16.89% 13.75% 12.25% 

NM4 3.18% N/A* N/A* 1.04% 2.22% 

NM5 2.31% N/A* N/A* 1.21% N/A* 

NM6 6.16% 32.37% 13.58% 9.36% 34.10% 

 
✝ The iPWMs of the NM1, NM2 and NM3 motifs used to scan the hg19 genome assembly 

come from the datasets of BAF155, NANOG and ESRRA, respectively. 

* The histone modification data for the specific cell line used to derive the iPWM is 

unavailable. 

 














