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The dose from ionizing radiation exposure can be interpolated from a calibration curve fit to the frequency of dicentric chromo-
somes (DCs) at multiple doses. As DC counts are manually determined, there is an acute need for accurate, fully automated bio-
dosimetry calibration curve generation and analysis of exposed samples. Software, the Automated Dicentric Chromosome
Identifier (ADCI), is presented which detects and discriminates DCs from monocentric chromosomes, computes biodosimetry cali-
bration curves and estimates radiation dose. Images of metaphase cells from samples, exposed at 1.4–3.4Gy, that had been manu-
ally scored by two reference laboratories were reanalyzed with ADCI. This resulted in estimated exposures within 0.4–1.1Gy
of the physical dose. Therefore, ADCI can determine radiation dose with accuracies comparable to standard triage biodosimetry.
Calibration curves were generated from metaphase images in ~10 h, and dose estimations required ~0.8 h per 500 image sample.
Running multiple instances of ADCI may be an effective response to a mass casualty radiation event.

INTRODUCTION

Biodosimetry is a useful tool for assessing the dose
received by an individual when no reliable physical
dosimetry is available. Traditionally, the dicentric
chromosome (DC) assay is the method of choice for
recent acute exposures to ionizing radiation. This
cytogenetic method is based on measuring the fre-
quency of DCs in metaphase cells and converting
this frequency to dose through the use of in vitro-
generated calibration curves(1–3). Classical, microscope
analysis of DCs is robust, allowing the estimation
of doses in the range of 0.1–5 Gy. For dose esti-
mates in the low end of this range, however, 1000
cells are typically scored making this method time-
consuming and only feasible for small numbers of
exposures. This manual approach lacks adequate
throughput in a mass casualty event to estimate
radiation exposures needed to triage individuals for
diagnosis and treatment.

In response to the pressing demand to increase
throughput in cytogenetic biodosimetry, capture of
metaphase images and interpretation of DCs has
been partially automated, with a concomitant
reduction in the numbers of cells analyzed.
Software (e.g. MSearch, DCScore [Metasystems])
has automated the scanning of microscope slides
to locate metaphase cells and assisted review of
DCs for triage biodosimetry(4). This software has

also facilitated inter-laboratory collaboration and
the assessment of partial-body exposures(5). The
adoption of triage scoring of 50 carefully selected
cells greatly increases the throughput, while maintain-
ing the ability to identify exposures of over 1Gy(6)

and reducing the time required by more than a fac-
tor of 5(7).

More recently, image analysis software designed
to identify DCs (DCScore™) has been used to semi-
automate biodosimetry(8–10). However, it is still
necessary to manually preprocess and supervise DC
analyses performed with this software. After cells
with abnormal chromosome counts and ‘metaphases
where the two chromatids are sticked or with twisted
chromosomes, and metaphases where centromeric
constrictions are not visible’ are removed, the remain-
ing images are analyzed with DCScore(10). The oper-
ator then manually excludes images with ‘twisted
chromosomes, two aligned chromosomes, and other
figures detected as dicentrics by the software’. False
positive (FP) DCs will alter the estimated dose if
these steps are not performed(10). The high rate of
FPs in raw data is not surprising in light of the known
variation among chromosome morphologies. The
detection of DCs, which are much less frequent
than monocentric chromosomes (MCs), is also
impacted by differences in sample processing pro-
cedures among laboratories(11).
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The Automatic Dicentric Chromosome Identifier
(ADCI) software described here addresses many of
the issues of varying morphologies such that images
captured on a metaphase finder can be analyzed
without the need for manual verification. This
unattended automated DC analysis would address a
compelling demand for high throughput measure-
ment of biological radiation overexposure (i.e. rapid
response to industrial, clinical or terrorism inci-
dents), without compromising accuracy.

MATERIALS AND METHODS

Samples and data used for automated biodosimetry

In this study, all images were obtained from sam-
ples prepared at two different biodosimetry refer-
ence laboratories (Health Canada [HC] and
Canadian Nuclear Laboratories [CNL; formerly
AECL or Atomic Energy of Canada Limited]).
Two sets of images were supplied from each labora-
tory. The first set constituted images from X-ray
calibration curve samples that had been exposed to
doses between 0 and 4 Gy. The second set was
blinded samples that had been exposed to various
X-ray doses in the same dose range. All samples
were irradiated at HC using an XRAD-320
(Precision X-ray, North Branford, CT) and pro-
cessed at both of the laboratories.

Sample processing protocols were harmonized
based on the general guidance provided by the
International Atomic Energy Agency (IAEA)(12) and
ISO (ISO 19238, 2014). Briefly, each laboratory cul-
tured whole blood diluted with culture medium
(RPMI 1640) containing 15% fetal bovine serum,
with L-glutamine, penicillin, streptomycin and 15mM
BrdU and stimulated to cycle by the addition of 2%
phytohemagglutinin. The cells were incubated at
37°C and 5% CO2 for 48 h, with 1% colcemid at
10 mg/ml added at 44 h for mitotic arrest. The meta-
phase spreads were harvested after treatment in
a hypotonic solution and fixation in 3:1 methanol:
glacial acetic acid Carnoy’s fixative. A temperature
and humidity-controlled chamber was used to prepare
metaphase cells on glass slides which were stained
with fluorescence-plus Giemsa for chromosome aber-
ration analysis by brightfield microscopy.

The slides were scanned at low magnification
(×10) on an automated cytogenetic imaging platform
(MetaSystems Inc., Newton, MA) to identify meta-
phase cells; images of individual metaphase spreads
were then digitally captured at high magnification
(×63). The metaphase cells were manually selected
and scored for DCs at each of the laboratories; sub-
sequently, images were analyzed with ADCI. The
original centromere detection and MC–DC support
vector machine (SVMs)(13) were derived using data

sets from HC, which differ from data sets in the pre-
sent study(14).

Overview of ADCI data analysis

Our strategy for automating DC identification
involved the development of algorithms capable of
recognizing variable chromosome morphologies, i.e.
bent or straight appearance, irregular or noisy
boundaries, and differences in the degree of chromo-
some condensation within and between cells that
result from asynchronous entry into metaphase.
Chromosome image segmentation is also con-
founded by undetected overlapping chromosomes
and sister chromatid separation (SCS). SCS, which
is often present in biodosimetry laboratory data,
affects the accuracy of computer automated image
analysis. Many cells are required (typically ≥500) to
accurately estimate radiation exposure; therefore,
efficient and validated image analysis methods are
required to detect DCs(3).

We previously described earlier versions of the
ADCI software based on a set of novel image seg-
mentation algorithms(15–18). The current version pro-
cesses Giemsa- (or DAPI-) stained human
metaphase cell images and specifically recognizes
DC chromosomes in the chromosome-segmented
images. The algorithm performs image segmentation
to identify chromosomes, localizes candidate centro-
meres and discriminates DCs from other objects in
metaphase cells. The image segmentation module
scans and separates foreground objects that include
MCs or DCs in a metaphase image, overlapped
chromosome clusters, nuclei and debris. Depending
on the chromosome morphology, chromosome frag-
ments may be split from complete chromosomes as a
result of SCS, and this can adversely affect auto-
mated scoring of DCs. The number of segmented
objects in an image is a pivotal indicator of the qual-
ity of the image. A method is implemented to prefer-
entially avoid metaphase cells containing
chromosome segmentation artefacts by thresholding
object counts. DCs are detected in thresholded
images with two sequential machine learning classi-
fiers. First, a SVM, is used to identify centromere
candidates(19), then these results are used to discrim-
inate DCs from other objects(14). Dose estimation is
automated by building dose calibration curves and
estimating exposures from DC frequencies in meta-
phase images of radiation exposed cells.

In many respects, the procedure to detect DCs in
images in ADCI is analogous to manual scoring of
metaphase cell images (Figure 1). The algorithm
accounts for variations in chromosome morphology
associated with differences in laboratory protocols.
The software determines and reports the numbers of
segmented and processed chromosome objects, and
the number of positive DC detections for an image.
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Performance of the combined SVM algorithms is
determined from the true positive (TP) detection
rates and positive predictive values (PPV) compared
to manual or ground truth scoring of DCs by experts.

MCs and DCs are discriminated with a radial basis
kernel SVM (termed the MC–DC SVM). The tuning
parameter, σ, can be changed to maximize either the
sensitivity or specificity of DC detection(14). The ana-
lysis of each metaphase image generates counts of
detected objects for 11 different MC–DC SVMs, each
derived for a different σ value. Larger values of σ
increase TPs and decrease PPVof the SVM. Different
values of σ are searched while training the SVM; the
σ value is chosen that yields the most accurate classifi-
cation results in multiple tests with different data sets.
Selection of the optimal σ value may vary among dif-
ferent laboratories.

Description of ADCI software elements

ADCI identifies and separates chromosome objects,
identifies centromere candidates and discriminates
DCs from MCs. The core functionality was originally
developed as a software library written in C++(14,18).
In ADCI, the library is integrated with functions to
derive calibration curves and estimate sample exposure
from the computed curves. The ADCI software appli-
cation can be navigated with a central graphical user
interface (GUI) suitable for analysis by cytogenetic
and biodosimetry laboratory personnel. The GUI is
functionally organized by sectors and panels for enter-
ing and processing sample data, and displaying results

(Figure 2). The processing function attempts to remove
non-chromosomal objects (e.g. nuclei, fragments and
debris), thresholds and separates objects, and identifies
DCs. The left sector contains the main work space for
users to instruct the software to select samples and
generate curves, and the right sector provides plot and
text console panels to visualize results. An object count
filter selects higher quality images with near normal
chromosome complements for determination of DC
frequencies. The display in the right panel shows the
distribution of the number of segmented objects in a
sample; however, it may also show calibration curve(s)
and the estimated dose computed for different test
sample(s) superimposed on the curve. Users create and
process a sample by providing the path to the folder
with the metaphase images for each sample and by
selecting icons corresponding to the relevant function.
The software scores DCs and records the contour for
each object in a processed sample for each of the DC/
MC SVMs. Multiple samples may be processed in the
same run. Laboratory source information for new
samples is specified at processing. Unprocessed sam-
ples can be added to the process queue in the work
space. Users start this queue to process a selected sam-
ple or all samples in the queue. A progress bar indi-
cates which samples have been processed, those yet to
be processed, and the percent completion of the cur-
rent sample. Users can abort a multi-sample processing
procedure, while preserving results from samples that
have completed analysis. Once the processing proced-
ure completes, those samples are removed from the
queue. Users can save a processed sample with all
annotated metaphase images; conversely, a saved sam-
ple can be restored for further analysis.

After sample processing, the software outlines each
processed chromosome in a metaphase cell in color.
Red and green contours highlight DCs and MCs,
respectively, while those with blue contours are unclas-
sifiable, as a result of incomplete Intensity Integrated
Laplacian image segmentation(17) (Figure 1). Objects
without outlines represent overlapped chromosomes,
nuclei and debris, which are not included in counts of
objects in a cell. Individual cells may be sorted, auto-
matically or manually filtered out with a built-in
microscope image viewer.

The number of chromosome objects per cell can be
specified as a range, eliminating images with either
too many (comprising multiple cells, extreme levels of
SCS or non-chromosomal debris) or too few objects
(incomplete metaphase cells or highly overlapped sets
of chromosomes). DC counts and frequencies are cal-
culated and reported by the GUI. The DC frequency
calculation is performed only on cells within the thre-
sholded range. The overall distribution of processed
object counts among all cells can be viewed as a
histogram plot with the range of object thresholds
highlighted. The expected Poisson distribution for an
average DCs/cell at a given dose can also be plotted

Figure 1. Representative processed metaphase image dis-
played by the microscopy image viewer in ADCI. The
image in the display is B05–A.655 from the CNL-blinded
sample INTOC0S05. The result is scored by SVM with
σ = 1.5. DCs, MCs and unprocessed chromosomes have
red, green and blue contours, respectively. Objects without
highlighted contours are unresolvable overlapping or touch-
ing chromosomes or artifactual objects. Captured images

are inverted prior to processing by ADCI.
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as a dotted line overlaying a bar graph of the actual
distribution cells with different DC counts.

Generation of calibration curves

Despite the use of a common set of laboratory pro-
tocols, the dose calibration curves produced from
each laboratory are unique and may produce differ-
ent dose estimates(3). To determine DC counts and
ensure internally consistent dose estimates, data
from the same laboratory for test samples and cali-
bration curves are both processed using ADCI. To
prepare dose–response curves, peripheral blood from
a single individual was exposed to a 250-kVp radi-
ation source, at 0.1, 0.25, 0.5 , 0.75, 1, 2, 3 , 4 and
5Gy, and metaphase cells were prepared according
to standard cytogenetic laboratory protocols. Along
with unexposed control samples (0 Gy), the exposed
samples were manually scored by HC and CNL and

each laboratory generated their own calibration
curve. Metaphase images were provided from a sub-
set of these samples (0, 0.5, 1, 2, 3 and 4Gy) for
analysis with ADCI. At HC, cells were selected by
the Metafer slide scanning system (Metasystems),
which removes some, but not all unsuitable cell
images. CNL manually curated images of metaphase
cells based on the spatial distribution, morphology
and numbers of chromosomes detected. Calibration
curves were derived both manually and with ADCI
(both are shown in Figure 3). ADCI curves are gen-
erated for each MC–DC SVM (defined for σ values
ranging from 0.8 to 1.8) for each set of dose-
calibrated samples. These curves can be directly
compared with the manual calibration curves by
plotting the linear–quadratic formulae based on the
respective polynomial coefficients.

Calibration curves can also be entered with phys-
ical dose paired with responses (i.e. DCs/cell) from

Figure 2. Main window of the GUI software with icons numbered for description purposes. Panel A is a list of sample
operations. In Panel A, selecting icons performs: (1) add a new sample, (2) open a sample from file, (3) save a processed
sample to file, (4) add an unprocessed sample to process queue, (5) discard existing result for a sample, (6) remove a sample
from work space, (7) edit a sample, (8) show distribution of segmented objects in a sample, (9) show distribution of positive
objects in a sample, (10) view ADCI result in metaphase images in a sample, (11) export ADCI result of a sample to a
comma separated values file. Panel B is a list of curve operations. In Panel B, selecting icons performs: (12) create a new
curve, (13) open a curve from file, (14) save a curve to file, (15) remove a curve from work space, (16) make dose estimation
using a curve, (17) color selection for a curve in the plot panel. Panel C is the ADCI process queue. In Panel C, selecting
icons performs: (18) process the selected sample, (19) process all samples in the process queue, (20) remove a sample from
the process queue. Panel D is a plot display panel in the software (displaying distribution of segmented objects in a sample).
In Panel D, selecting icons performs: (21) clear the plot, (22) save current plot to a graphical file (png, jpeg, etc). Panel E is
the console display panel (displaying text information about a sample below the plot). The current plot display panel
demonstrates the distribution of segmented objects in the HC 2-Gy calibration sample; however, it can also display the out-
puts shown in Figures 3–5. Here, the X- and Y-axes indicate the number of segmented objects in an image and the number
of images in the sample, respectively. The distribution of segmented objects that fall within the user-specified limits (40–60
is shown; the interval is defined prior to metaphase cell image processing) are indicated by the bracketed interval of the
histogram. This and the remaining figures are presented in gray scale; however, the software itself produces color graphics.
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either manually scored DCs or ADCI-detected DCs.
A linear–quadratic curve can also be created from
the corresponding polynomial coefficients. Curve
data can either be saved to a file or loaded from a
saved file. The graphical interface displays the poly-
nomial regression curve fit to the DC frequencies at
different doses and the curve equation.

Blinded dose estimation of test samples

To estimate the dose–response (in Gy) for a sample
of unknown exposure, the observed DC frequency

in a processed sample is evaluated with the linear
polynomial curve equation (Figure 4). The exposure
can also be estimated for a test sample in ADCI by
entering the DC count, i.e. the response, for a selected
curve. The software interpolates the best estimate of
the dose corresponding to the DC frequency by
searching the applicable range of the curve in incre-
ments of 0.05Gy.

For R DCs in a given sample, the lower bound RL
and upper bound RU is obtained according to
Equation (1), with α = 0.05. The exact confidence
interval (CI) for a Poisson distribution of events R is

Figure 3. ADCI calibration curves for HC and CNL, in comparison with HC and CNL (labeled as AECL) manual cali-
bration curves. The manual calibration curves contain additional values at 0.1, 0.25 and 0.75Gy that were not analyzed
with ADCI. X- and Y-axes indicate dose (Gy) and response (DCs/metaphase), respectively. Curves are plotted with the ori-
ginal calibration dose–response points indicated as diamonds. Panels A and B show ADCI and manual calibration curves
for HC and for CNL data, respectively, annotated with the corresponding σ values (σ = 1.4, 1.5, 1.6). In Panel A, the man-
ual HC curve is denoted in black and corresponding CNL curve is shown in gray. In Panel B, the CNL manual curve is

indicated in black and HC curve is shown in gray.
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This method uses the chi-square distribution to
calculate the CI for Poisson distribution (Equation 1).
Using these two values with a selected ADCI calibra-
tion curve in the same way estimated dose D is calcu-
lated for R, we obtain the corresponding lower bound
DL and upper bound DU for dose estimation. This
CI measures the uncertainty in the dose caused by
the uncertainty of chromosome aberrations in a
sample. It does not reflect the uncertainty of the
calibration curve, but it is acceptable for well-
established curves(3).

For ADCI-generated curves, the SVM with the σ
value that results in the maximum combined TP rate
and PPV is selected for testing of samples of unknown
exposure. After the sample is processed to identify
DCs, the DC frequencies for each of these SVMs are
determined. When chromosome aberration frequen-
cies are compared between samples in ADCI, the σ
parameter for each sample should be the same and
consistent with the σ value used to derive the corre-
sponding calibration curve. The software does not

extrapolate doses for exposures beyond the range of
the calibration data; in those cases, it indicates the
dose to be below the minimum dose or above the
maximum dose of the applicable range.

RESULTS

The automated biodosimetry method estimates the
radiation dose in samples constituting a set of meta-
phase cell images from an individual exposed to low-
linear energy transfer (LET) radiation. Instead of
manually counting DCs in metaphase images to
determine the frequency of this aberration, the auto-
mated method detects and accrues DCs in a sample.
A sufficient number of images (typically ≥500) are
required to accurately estimate the dose received.

Sample quality assessment and DC analysis

The ADCI algorithm has optimal performance for
detection of DCs in metaphase images with a near
complete complement of well-separated, linear chro-
mosomes. However, the underlying methods can
accommodate a range of chromosome structures,

Figure 4. Dose estimation for blinded samples using an ADCI calibration curve. Doses of CNL samples AECLINTCO0S04,
AECLINTCO0S05 and AECLINTCO0S07 (corresponding to INTC03S04, INTC03S05 and INTC03S07 in Table 3, respect-
ively) are estimated using the ADCI calibration curve for CNL at σ = 1.5 (AECLCalibration15). The console panel describes
the results in the table with estimated doses in bold. The plot panel shows the curve in gray, with projections of dose estimations

as dotted lines. Confidence intervals for these estimates are indicated in Table 3.
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counts and spacing. Nevertheless, variation in
mitotic index, cell culture protocols, slide prepar-
ation and chromosome length affect DC detection
due to irregular chromosome morphology, staining
or distribution, such as overlapping or incomplete
sets of chromosomes and extreme SCS. The com-
puted DC frequency can be skewed by incomplete
metaphase cells, multiple cells in an image, or exces-
sive cellular debris or non-metaphase objects, which
can affect the estimated dose (see discussion of
INTC03S10 below). An image with a paucity of
objects (<30) is more likely to contain an incomplete
set of chromosomes or multiple overlapped chromo-
somes. Extreme SCS can split chromosomes, falsely
elevating the number of ‘chromosome objects’
detected. Experts can compensate for these complica-
tions by discarding these images with a counting filter
that defines the number of allowable objects in an
image at the time that image processing is initiated.

The ADCI software preprocesses images to assess
metaphase cell quality and indirectly, chromosome
morphology. ADCI retains images based on the num-
ber of segmented objects (Figure 2). A range of 40 and
60 objects per image has been defined empirically to
limit overlapped chromosomes and incomplete meta-
phase cells. ADCI then processes the objects with
detectable centromeres. The Integrated Intensity
Laplacian module requires that each object has a con-
tour that can be evenly divided in order for it to be
processed(17). Unprocessed objects are infrequent
and tend to exhibit irregular shapes, such as over-
lapped or short chromosomes or fragments, or cel-
lular debris. Only metaphase cells in which ≥20%
of all objects can be processed are retained for DC
identification and dose estimation.

The software was validated with image data from
radiation exposed samples of known and masked
radiation doses. For each laboratory, we processed

the calibration samples and test samples separately
in ADCI, built ADCI calibration curves, compared
these curves with manual calibration curves, and
estimated radiation doses for the blinded test sam-
ples using the calibration curves. During sample pro-
cessing, the software calls the ADCI library to
process the selected sample or all samples in the
queue, in parallel with multiple CPU threads. For a
sample containing 500–1000 images, the process
requires 0.8–1.6 h with a laptop computer (equipped
with an Intel I7-M620 2.67 GHz CPU and 8Gb
RAM).

Generation of calibration curves

The results of processing calibration samples are
indicated in Table 1. ADCI detects a monotonic, lin-
ear increase of DCs/cell with dose in both HC and
CNL data sets. However, the distribution of DCs
detected by ADCI shows that the expected Poisson
distribution is somewhat overdispersed in the HC
data set above 1 Gy (σ = 1.4), and in the CNL data
set at 0.4 Gy (σ = 1.4) and 2Gy (σ = 1.5).

A set of linear–quadratic calibration curves for σ
values from 0.8 to 1.8, in increments of 0.1, were con-
structed separately for data from HC and CNL. The
coefficients for these functions are summarized in
Table 2. We found that SVMs based on 1.4 ≤ σ ≤ 1.6
maximize the combined TP rate and PPV. The algo-
rithm is accurate for 2–4Gy high-dose data and cur-
rently has satisfactory, but less accurate, performance
at lower dose (1Gy).

The ADCI-derived calibration curves at σ = 1.4,
1.5 and 1.6 for the HC data are shown in Figure 3A
and for CNL in Figure 3B, respectively, as well as
the calibration curves derived of the same images by
manual scoring by these laboratories.

Table 1. Detection of DCs by ADCI at different doses in images from HC and CNL reference laboratories.

Laboratory/dose No. cell images σ = 1.4 σ = 1.5

DC/cell u-test DC/cell u-test

HC/0 Gy 731 0.282 1.54 0.345 1.96
HC/0.5 Gy 586 0.397 1.00 0.48 0.58
HC/1 Gy 1566 0.408 3.89 0.5 4.87
HC/2 Gy 1147 0.538 8.12 0.651 7.24
HC/3 Gy 1212 0.618 2.59 0.746 2.60
HC/4 Gy 909 0.785 2.84 0.915 2.99
CNL/0Gy 500 0.324 0.38 0.378 0.92
CNL/0.5 Gy 500 0.327 2.44 0.401 2.24
CNL/1Gy 500 0.304 1.26 0.422 1.76
CNL/2Gy 500 0.408 1.49 0.496 3.29
CNL/3Gy 500 0.583 1.9 0.703 2.6
CNL/4Gy 500 0.628 1.28 0.766 1.3
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Dose estimation of test samples

HC and CNL each provided three test samples
at different, blinded radiation doses from an inter-
national biodosimetry exercise. Physical radiation
exposures were not revealed until doses were first
estimated by ADCI and by manual cytogenetic
review. Images from samples INTC03S01, INTC03S08
and INTC03S10 were obtained from HC, and
INTC03S04, INTC03S05, INTC03S07 came from
CNL. HC used the Metafer system itself to perform
preliminary image selection, while CNL manually
selected metaphase images from the blinded samples.
Metafer does not eliminate all images without meta-
phase chromosomes nor does it remove densely over-
lapped or incomplete metaphase cells. Blinded
samples were processed by the ADCI software and

had doses estimated according to ADCI calibration
curves. Cytogenetic specialists in the corresponding
labs also scored these samples. Five experts at HC
each scored 50 metaphase images for each sample.
At CNL, four experts each scored 50 metaphase
images for each sample. The frequency of DCs was
calculated for each sample from which the radiation
doses were then estimated based on the manual cali-
bration curves in each laboratory.

The results and comparisons of traditional manual
biodosimetry and automated biodosimetry by ADCI
are shown in Table 3. With respect to physical doses,
differences between expert-scored samples ranged
from 0 to 0.3 Gy, whereas ADCI-scored samples dif-
fered by 0.3–1.1 Gy. Exposure was underestimated in
sample INTC03S10, which exhibited the largest

Table 2. Coefficients for ADCI-generated, linear–quadratic calibration curves.

Curve Coefficients Statistics

Lab, SVM parameter Intercept Linear Quadratic R2 SSE

HC, σ = 1.4 0.308 0.097 0.004 0.981 0.003
HC, σ = 1.5 0.373 0.128 0.001 0.984 0.003
HC, σ = 1.6 0.444 0.157 −0.003 0.979 0.0055
CNL, σ = 1.4 0.303 0.029 0.014 0.934 0.0067
CNL, σ = 1.5 0.367 0.056 0.012 0.964 0.005
CNL, σ = 1.6 0.420 0.062 0.013 0.987 0.002

σ, kernel parameter for radial basis function in SVM; R2, square of the correlation between the response values and the
predicted response values; SSE, total deviation of the response values from the fit to the response values, i.e. sum of squares
due to error.

Table 3. Estimation of radiation exposure of blinded test samples by ADCI.

Laboratory Sample identifier

HC INTC03S01 INTC03S08 INTC03S10

No. of metaphases processeda 540 637 708
Physical dose, Gy 3.1 2.3 1.4
Expert inference, average Gy 3.4 2.5 1.4
ADCI estimation, Gy, σ = 1.5 3.9 1.65 0.3
95% Confidence interval [DL, DR], σ = 1.5 [3.3, 4] [1.2, 2.1] [0, 0.65]
ADCI u-test, σ = 1.5 9.45 6.46 4.23

CNL INTC03S04 INTC03S05 INTC03S07

No. of metaphases processeda 448 500 385
Physical dose, Gy 1.8 2.8 3.4
Expert inference, average Gy 1.7 2.7 3.1
ADCI estimation, Gy, σ = 1.5 1.35 2.4 2.95
95% Confidence interval [DL, DR], σ = 1.5 [0.55, 2.0] [1.8, 2.95] [2.3, 3.55]
ADCI u-test, σ = 1.5 2.74 1.21 2.8

aMetaphase cells analyzed after filtering using thresholded number of objects in image; see Materials and Methods.

8

P. K. ROGAN ET AL.

 at U
niversity of W

estern O
ntario on July 13, 2016

http://rpd.oxfordjournals.org/
D

ow
nloaded from

 

http://rpd.oxfordjournals.org/


deviation from the actual dose, due to Metafer-
generated images lacking metaphase cells. ADCI
scoring was more accurate for CNL samples, in
which the images were manually preselected.

DISCUSSION

The ADCI algorithm and software implement a
fully automated approach to radiation biodosimetry
using inferred DC frequencies as biological end-
points. Manual involvement is limited to data input
and operational decision-making for DC detection;
derivation of calibration curves and dose estimations
are performed by the software. This relieves the
workload of biodosimetry interpretation in cytogen-
etic biodosimetry personnel due to its relatively fast
processing speed and by eliminating required inter-
action with the user during processing. Parallel ver-
sions of some ADCI modules have been successfully
deployed on various distributed computing systems,
which further accelerate the ADCI procedure(18).
The dose estimation performed by the software is
fairly accurate, with an average difference of 0.65 Gy
between the estimated dose and the physical dose in
the tested samples.

The quality of the metaphase images in a sample
significantly affects accuracy of the automated DC
analysis and consequently DC frequency measurement
and dose estimation for the sample in ADCI. Notable
differences in image quality are evident between sam-
ples from HC and CNL data. CNL samples exhibit
higher quality cell images with well-spread, and fewer
overlapped chromosomes, as well as decreased SCS
relative to the HC samples analyzed. However, CNL
performed manual image selection that was more
stringent than the automatic cell selection performed
by HC with the Metafer system. The u-test values of
HC calibration samples and blinded samples are lar-
ger than those of CNL samples. Over-dispersion is pri-
marily attributed to FP DC detection in the ADCI
algorithm. FP DC detection is more common in the
HC samples than in CNL samples. Furthermore, the
distribution of the number of segmented objects also
differs between the blinded HC and CNL samples. A
manual review of metaphases in samples from both
HC and CNL confirmed these quality differences, and
explains the differences in accuracy of dose estimation
in the blinded samples from HC.

Calibration curves in ADCI

A minimum of three dose-calibrated samples at dif-
ferent exposures are required to fit a dose estimation
curve from DC frequencies. The curve fit to these
data is defined by a linear–quadratic formula defined
by a set of coefficients by a maximum likelihood
method(3). The maximum dose and the minimum
dose in the sample set define the applicable range for

estimating dose of samples with undetermined test
sample exposures. In practice, this range spans 0 to
4–5 Gy, which is approximately the maximum toler-
able whole body dose.

For whole body irradiation, these chromosome
aberrations occur randomly and follow a Poisson
distribution. The distribution of chromosome aberra-
tions in cells is related to the type of radiation(3). In
ADCI, a linear–quadratic curve is plotted from these
data. The curve fits a linear–quadratic function in
low-LET radiation scenarios, where two separate
radiation events are thought to be required to create
two double-stranded breaks needed for DC forma-
tion. For high-LET radiation, a linear relationship is
expected. The probability of a DC being detected
depends on stringency of the SVM and effectiveness
of the feature combination that defines the SVM.
While the distribution of TPs is expected to fit a
Poisson at low LET, FPs are not independent from
each other in ADCI. Chromosomes with SCS, over-
lapped and fragmented chromosomes are major
sources of FPs. Cells with more FPs, which are more
prevalent in lower quality metaphase cells, bias the
calibration curve toward the linear component.

The Poisson fit is one measure that can be used to
evaluate the overall performance of ADCI. An
excess of FPs will produce Poisson distributions that
underrepresent cells without any DCs or a single
DC. ADCI computes the Poisson distribution for
the average number of positive DCs per cell (the λ
parameter), which is compared with the observed
distribution of cells with different DC frequencies
detected (Figure 5). The dispersion index, or u
value(20) can be used to assess conformity of the
ADCI-derived DC distribution to the Poisson. A value
of μ > 1.96 indicates over-dispersion due to non-
uniform exposure, while values ≤1.96 represent
under-dispersion. For the minimally curated HC test
samples, the combination of unrecognized FP DCs
and images lacking metaphase cells distort this stat-
istic. By contrast, the curated images in the CNL
test samples exhibited μ values within or close to
these thresholds. Automated preprocessing and filter-
ing of images and FP DCs will limit these sources of
error, and should facilitate analyses partial-body
exposures using ADCI.

The linear component of the fitted curve domi-
nates the ADCI calibration curves relative to the
corresponding manual curves. DC responses of
ADCI curves increase at a slower rate due to the
smaller quadratic coefficients, especially at high
dose. The derivatives of ADCI curves are smaller
than the ones of the manual curve for a certain dose,
which is reflected as more constant rates of change
in responses for ADCI curves. As seen in Figure 3,
ADCI curves demonstrate stronger responses at low
dose (1–2Gy) and weaker responses at high dose
(~4 Gy) than the manual curves. In the 3–4 Gy
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range, ADCI and manual curves are most similar.
The detection of FPs by ADCI at low doses is pri-
marily related to the adventitious association of
short arms of acrocentric chromosomes and SCS
chromosomes that are not eliminated by other
image filters. SVMs created at low σ values are
particularly susceptible to these artefacts. However,
the frequency of these FPs appears to be related to
image quality, and is invariant to increased radi-
ation level. FPs have a proportionately larger
impact at low doses, causing a stronger response in
ADCI curves. At higher levels of radiation expos-
ure, FPs tend to be balanced out by an increase in
FNs, i.e. DCs missed by the SVM. Beyond the
level at which the number of FNs exceed the num-
ber of FPs, the ADCI calibration curves exhibit a
weaker response than manually derived curves. The
differences between ADCI-derived calibration
curves at different σ values largely affect the inter-
cept (DCs/cell) rather than the slope. The intercept
increases with higher values of σ. In fact, the man-
ual curves prepared by HC and CNL also differ in
the magnitude and growth rate of response. Both
curves fit to linear–quadratic functions with high
precision and have similar responses at low dose.
However, the HC manual curve has a stronger
response than the corresponding CNL curve at
high dose.

While differences exist between ADCI calibration
curves and manual curves and the ADCI algorithm
is not free of errors in DC detection, it is still pos-
sible to infer radiation exposure doses from test sam-
ples with reasonable accuracy. However, accuracy is
highly dependent on the quality of images in the
samples. Manually selected images more accurately
estimate physical radiation exposures, despite the
introduction of automated preprocessing and filter-
ing procedures in ADCI to eliminate segmentation
and SVM classification errors.

DCScore™ software requires manual preprocessing
and postprocessing review of DCs(4,9), especially at
low radiation doses. By contrast, ADCI that sub-
stantially limits the need to manually review results.
Images can, nevertheless, be manually curated in
ADCI to eliminate those without metaphase cells or
containing FP DCs. It is notable that dose estimates
from the curated CNL data produced results of com-
parable accuracy to manual DC scoring without any
image post-processing. These assay results may be of
particular value for discriminating high from low
dose exposures.

Initially, we anticipate that the ADCI software will
be an adjunct to conventional manual scoring of
DCs. Once laboratories gain experience with the
ADCI software, it could become a routine tool for
radiation biodosimetry. Practical applications of

Figure 5. Poisson distribution of DCs and statistical analysis of a sample in ADCI. Distribution of positive detections in
the CNL 3Gy calibration sample. In the plot panel (top), the X-axis is the number of positive detections in a metaphase
image, and the Y-axis represents the frequency of each metaphase image type in the sample. The bar graph shows the
actual positive detection distribution and the dotted lines represent the corresponding Poisson distribution. The distribution

of DCs is also summarized in the console display panel.
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ADCI will include i) triaging samples in large scale
events freeing up biodosimetry personnel to accept
and process more samples, ii) screening of popula-
tions exposed to radiation to study variation in radi-
ation response between individuals and, iii) to create
composite calibration curves based on multiple indi-
viduals or radiation sources. Furthermore, it may be
useful for the identification of radiation exposed indi-
viduals with occupational, military or clinical overex-
posures, and may be relevant for assessing long term
effects of radiation therapy in cancer patients.
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