CytognomiX

Demonstration of the Automated Dicentric Chromosome Identifier and Dose Estimator System (ADCI[™]) in a Cloud-based Online Environment

Ben C. Shirley^a, Eliseos J. Mucaki^b, Joan H.M. Knoll^{a,c}, and Peter K. Rogan^{a,d}

^aCytoGnomix, London, Canada; ^bSchulich School of Medicine and Dentistry, University of Western Ontario, London, Canada; ^cDepartment of

Pathology and Laboratory Medicine, University of Western Ontario, London, Canada; ^dDepartments of Biochemistry and Oncology, University of

Western Ontario, London, Canada

Email: info@cytognomix.com

The 3rd Research Coordination Meeting (RCM) of the Coordinated Research Project (CRP) E35010:Applications of Biological Dosimetry Methods in Radiation Oncology, Nuclear Medicine, Diagnostic and InterventionalRadiology (MEDBIODOSE)8 – 12 February 2021CytoGnomix Inc. Copyright 2021

Automated detection of dicentric chromosomes

- The Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) software completely automates DC detection and estimates biological dose
- ADCI selects appropriate images for analysis, classifies each object as either a centromere-containing chromosome or non-chromosome, further distinguishes chromosomes as monocentric or dicentric using machine learning-based image processing techniques, determines DC frequency within a sample, and estimates biological radiation dose by comparing sample DC frequency with calibration curves computed using calibration samples
 - Cell Image Chromosomes Contour Width Profile Centromere Candidates Centreline Prediction of DCs Discriminate MC/DCs
- ADCI can process a sample of 500 metaphase images in 3–5 min using a multicore desktop computer system equipped with:
 - Intel i7-6700HQ, 16 GB RAM
 - graphics processing unit: Nvidia® GTX 960M / RTX 2070
- This benchmark estimate is equivalent to ~1.7 images per second, or ~6000 images per hour
- Results fulfill IAEA criteria for triage biodosimetry

ADCI in the Cloud: ADCI_Online

- Unanticipated radiation exposures require rapid dose estimation and discrimination of homogeneous from partial-body exposures.
- Once metaphase cell images are captured by a computerized-microscope system, the same computer typically performs image analysis, during which time the system is unavailable for obtaining images from other samples.
- Outsourcing image analysis to ADCI[™] eliminates this bottleneck and significantly increases overall throughput.
- Accessing ADCI_Online:
 - Eliminates the need for a dedicated computer system to run ADCI
 - Generates the same results as dedicated systems
 - Short-term subscription format reduces cost
 - Can accommodate on-demand bursts of computing power when necessary
 - Can ensure that cytogenetic data is collocated in the same region as the user
 - Securely isolates individual user data and protects software analysis from intrusion, disruption and corruption
 - Dose estimation can be carried out anywhere there is a reliable internet connection

ADCI_Online: Differences from MS Windows[®] version

- Windows[®]-based ADCI has been ported to ADCI_Online, a secure web-streaming platform (AppStream 2.0, Amazon Web Services) that can be accessed worldwide.
- Operationally, ADCI_Online is indistinguishable from the MS Windows version that runs on a dedicated, standalone computer.
- Because the base hardware configuration of AWS ADCI_Online is a 2 processor CPU, 3.75Gb RAM, sample processing is ~3 fold slower than the recommended Desktop computer running Windows[®] ADCI (Intel I7-7th gen 4 proc. CPU, 16 Gb RAM, w/o GPU).
- ADCI_Online runs exclusively on the cloud-based system and pixels are streamed to the user through a web browser. The experience is similar to watching a movie in a web browser in that computing resources and disk space are not consumed on the local system. Local keyboard and mouse commands are sent to the cloud-based system to control ADCI_Online.
- ADCI_Online is accessed by streaming. The total duration of each subscribed streaming session can be up to 96 hours or 4 days (actual clock time).

Scalability

- Although each system running ADCI_Online has less computing power than a high-performance system running ADCI Desktop, the cloud-based nature of ADCI_Online allows for rapid expansion of resources.
- If many samples need to be processed quickly, more computing power can be added (but incurs additional costs). ADCI_Online can be reconfigured quickly within ~15 minutes to:
 - Clone the system as many times as necessary, providing an array of cloud-based systems available for use
 - Increase the computing power of each system running ADCI_Online
 - Both of the above
- A similar array of systems could be achieved by utilizing multiple physical computers, however the ability to expand and reduce available resources as necessary provides flexibility and reduces costs.

Data and Program Security

- When a new user accesses ADCI_Online:
 - A UserName is created from their email address
 - An Amazon Web Services (AWS) S3 Bucket is used to store their metaphase image files and reports generated by analysis of the data.
- The user-specific directory in the S3 Bucket is mounted to the cloud-based system, granting the user access to their uploaded images in ADCI_Online.
- Files are encrypted in transit to/from the Bucket (HTTPS protocol) and server-side encryption is applied to all files in the Bucket (AWS Key Management Service)
- File types (e.g. images) are verified by the system upon uploading. Uploaded files are prevented from running as executables on AWS AppStream.
- Internal elements of ADCI software are invisible/inaccessible to the user
- Internet and browser access from within ADCI_Online itself is disabled
- Only files created by ADCI_Online can be downloaded by the UserName that generated them.

Validation of ADCI_Online

- Dose estimates obtained through ADCI_Online were validated against those obtained through ADCI Desktop
- Metaphase images associated with a test sample (HS01) obtained from Health Canada (HC) were uploaded to ADCI_Online and processed. The number of DCs detected matched ADCI Desktop results.
- Other previously processed HC and PHE samples were uploaded to ADCI_Online
 - HC: Dose estimates for homogeneously irradiated samples were generated after application of 4 different image selection models (A_B, A_C, A_D, Automated178981) and matched those presented in *Rad. Prot. Dosimetry* 186(1): 42-47, 2019.
 - PHE: Estimates of partial-body dose and fraction of blood irradiated were generated for partially irradiated samples (PHE_E, PHE_F, PHE_G) and agreed with those presented in *Int J Rad Biol*. **96(11)**: 1492-1503, 2020.

Demonstration: Overview of user interaction

 Before a subscription period begins, a new user can sign into the AWS Management Console (sign-in credentials provided) and upload metaphase images to cloud storage.
 This mechanism is also used to download ADCI reports after they have been generated.

2) To access ADCI_Online, the user signs into AppStream in their web browser (sign-in credentials provided) and requests a new streaming session. Behind the scenes, a new streaming instance is cloned from a snapshot of the ADCI_Online system.

Simultaneously, the user's S3 storage directory is mounted to the streaming instance, allowing the user to access their uploaded metaphase images and save results generated while executing ADCI.

Demonstration: Metaphase image upload

aws

A custom script adds the new user to the ADCI_Online system, configures their S3 storage directory, and generates a random password for the user. An e-mail is sent to the user containing their password, and the SHA-256 hash of their UserName. The user signs in to AWS and accesses S3 to begin uploading metaphase images to their own directory.

Sign in as IAM user

AWS N	Manager	ne	nt Console			
AWS servio	es					
Recently	visited services					
All servic	es					
EC2	ail [2]	ŝ	Quantum Technologies Amazon Braket	0	Security, Iden Compliance IAM	ntity, &
Lambo	da		Management & Governance AWS Organizations		Resource Acce Cognito	ss Manager
Elastic Server Repos AWS C	: Beanstalk ·less Application itory Dutposts		CloudWatch AWS Auto Scaling CloudFormation CloudTrail		Secrets Manag GuardDuty Inspector Amazon Macie	jer 2
EC2 in Conta Elastic Elastic Elastic	iners : Container Registry : Container Service : Kubernetes Service		Config OpsWorks Service Catalog Systems Manager AWS AppConfig Trusted Advisor		Certificate Ma Key Managem CloudHSM Directory Serv WAF & Shield	nager ent Service ice
Stora	ge		Control Tower AWS License Manager AWS Well-Architected Tool Personal Health Dashboard 12		AWS Firewall I Artifact Security Hub Detective	Manager

Demonstration: Metaphase image upload (cont.)

Other user directories are present in the user/userpool/ directory of the Bucket, however <u>each user can view the</u> <u>content of their own directory only</u>. Data stored within the "Persistent_ADCI_Data" directory is preserved between streaming sessions. Within that directory, an empty "ADCI_Images" directory awaits metaphase image uploads. Metaphase images for each sample are uploaded into separate folders on the system.

appstream2-*******-us-east-1-21812595**** > user/ > user/ > userpool/

erpool/ <u>riew the</u> within within ed ry, an se ble are > 0e1add9239ae3beea5e9a0f9e98aabbabff9aeaaf37e7c20f47529e1e02df8b2/ > Persistent_ADCL_Data/ > ADCL_Images/

Dbjects	DCI_Images/					🗇 Сору	S3 UR
Objects (0) Delete Actions Create folder Upload And the prefix Name Type Last modified No objects No objects No objects No objects Name Type No objects Name Type No objects No objects Name Type No objects No	Objects Folder properties						
Q. Find objects by prefix 1 > Name ▲ Type ▼ Last modified ▼ Size ▼ Storage class	Dbjects (0) Objects are the fundamental entities stored in Amazon S. List versions C Delete Action	Tor others to access your objects, you'll need to extend	explicitly grant them permissions. Learn more	Z			
Name Ype V Last modified V Size V Storage class	Q Find objects by prefix			Ci	The former days	< 1 >	0
INV UVIELLS	Name 🔺 Ty	e ⊽ Last modifie	ied ⊽ No objects	Size			

Demonstration: Metaphase image upload (cont.)

Folders of metaphase images can be uploaded to the system.When the user uploads an entire folder to S3 using the "Add Folder" button (circled on the slide), the name of the uploaded folder is the same as the name of the folder on the user's local computer.

ADCI expects each uploaded sample to be stored within its own directory. In this example, a 2Gy calibration sample is being uploaded to "ADCI_Images/2Gy/"

Regardless of the folder name on S3, the user provides <u>a sample</u> <u>ID</u> when they create a new sample in ADCI_Online. This ID is used to refer to the sample in all ADCI_Online functions.

Upload

Add the files and folders you want to upload to S3. To upload a file larger than 160GB, use the AWS CLI, AWS SDK or Amazon S3 REST API. Learn more []

Files and folders	(0)		Remove	Add files		Add folder
Q Find by name	able will be uptoaded.					< 1
Name	▲ Folder	⊽	Туре	⊽	Size	
	No	files or folder	re			

Upload

Add the files and folders you want to upload to S3. To upload a file larger than 160GB, use the AWS CLI, AWS SDK or Amazon S3 REST API. Learn more [

Drag and drop files and folders you want to upload here, or choose Add files, or Add folders.

File:	and folders (2180 Tot	al, 1.6 GB)		Remove	Ad	d file	s	Add folder				
Q	Find by name	Jobbeu.		< 1 2	34	5	6 7	8	218	>		
	Name 🔺	Folder	▽	Туре		V	Size			V		
	INTC05S01-4~C.1.TIF	2Gy/		image/tiff		776.3 KB						
	INTC05S01-4~C.10.TIF	2Gy/		image/tiff		721.2 KB						
0	INTC05501-4~C.100.TIF	2Gy/		image/tiff			755.	в кв				
	INTC05501-4~C.101.TIF	2Gy/		image/tiff		753.8 KB						
1	INTC05501-4~C.102.TIF	2Gy/		image/tiff		730.3 KB						
	INTC05S01-4~C.103.TIF	2Gy/		image/tiff		758.7 KB						
3	INTC05S01-4~C.105.TIF	2Gy/		image/tiff		751.3 KB						
Ő.	INTC05501-4~C.106.TIF	2Gy/		image/tiff			776.	4 KB				
Ď	INTC05S01-4~C.107.TIF	2Gy/		image/tiff		785.6 KB						
Ď	INTC05S01-4~C.109.TIF	2Gy/		image/tiff			806.	1 KB				

Cancel

CytoGnomix Inc. Copyright 2021

Demonstration: Metaphase image upload (cont.)

Progress of the upload can be seen in the banner at the top of the page. Users can ensure all images have been uploaded successfully by observing the "Succeeded" and "Failed" sections.

In this example, 2180 metaphase images (1.77Gb) were uploaded to the S3 Bucket in 17 minutes 33 seconds. This is a rate of ~2 images / second.

ading		7%				
tal remaining: 2026 files: 1.5 GB(93.32%) timated time remaining: 18 minutes ansfer rate: 1.4 MB/s		- 1%				
Ipload: status			Exit			
③ The information below will no longer be available after y	you navigate away from this page.					
Summary						
Summary Destination	Succeeded	Failed				

Demonstration: Begin ADCI Online streaming session

Users receive an e-mail from AWS with a link to a log-on webpage containing a temporary password and it prompts them to login and update their password. Once signed in, ADCI Online can be accessed in an "Application" view with no Windows desktop, or as a "Desktop" view which resembles a remote desktop session.

Users can access ADCI Online in a web browser or using desktop software provided by AWS.

AppStream 2.0	Choose ye
Log in to begin launching your applications.	
newuser@cytognomix.com	
•••••	AD
Forgot Password?	
Log în	
	Cayibo Gna compiese

ognomiX

our app to get started

Desktor

Demonstration: Create a new sample

browser.

calibration curve.

O 6 🕸 📉 🖓 Fn 🗸 🛛 Rnewuser@cytognomix.com 🗸 S ADCI Ð Samples Curves ADCI Process Queue Wizards Reports Settings Help Plot Samples Rescale Clear Save As Add New Sample to Workspace ? \times The content presented here is Identity Size Processed Specify a unique ID for the new sample streamed to the user's web HC Calibration 1.96Gv Use name of directory Directory of metaphase images C:/Users/PhotonUser/My Files/Home Folder/PERSISTENT_ADCI_DATA/ADCI_Images/2Gy Description of the sample (Optional) The dose of a calibration Laboratory source: Sample import date: 2021-02-03 sample can be embedded in Patient info(age, gender): Exposure date: Exposed physical dose: its sample ID allowing it to be Curves Curve Identity SVM In Plot recognized by ADCI automatically. An embedded dose must be in the format of Images in the folder: 2180 tifs, 2180 in total #Gy. For example, the 1.96Gy INTC05S01-4~C.1.TIF ^ sample here can contain the INTC05S01-4~C.10.TIF INTC05S01-4~C.100.TIF text '1.96Gy' or '1.96 GY' 2.4 3.2 4.8 INTC05S01-4~C.101.TIF INTC05S01-4~C.102.TIF ADCI Process Queue allowing ADCI to pre-populate INTC05S01-4~C.103.TIF Identity Size INTC05S01-4~C.105.TIF dose fields which generating a INTC05S01-4~C.106.TIF INTC05S01-4~C.107.TIF INTC05S01-4~C.109.TIF INTERCOLOGY ALCOHA TH OK Cancel

CytoGnomix Inc. Copyright 2021

Demonstration: Process a sample

In this example, ADCI_Online processed a 2180 image calibration sample in 110.89 min. This is a rate of ~20 images / min.

When saving samples, curves, or reports ADCI_Online automatically navigates to the "Persistent_ADCI_Data" directory in the user's "Home Folder". All files present in the Home Folder are preserved between streaming sessions.

ADCI Processing					—							
			Processing Queu	e								
Sample	No. Images	Status	Processing Result Hover for details	Processing Time	Damaged File(s))	Save HC_Calibration_1.9	96Gy				>
1 HC_Calibration_1.96G	/ 2180	\bigotimes	Success	110.89 min.	None		$\leftrightarrow \rightarrow \checkmark \uparrow \square \rightarrow P$	hotonUser > My Files > Home Folder >	PERSISTENT_ADCI_DATA >	v ⊙	Search PERSISTEN	NT_ADCI_DA >
							File <u>n</u> ame: File <u>n</u> ame: Save as type: ADCI	Name ADCI_Images BackupsOfContourFiles Examples Log Recovery SelectionModels	Date modified 2/3/2021 5:12 PM 2/3/2021 5:12 PM 2/3/2021 8:00 PM 2/3/2021 5:03 PM 2/3/2021 7:08 PM 2/3/2021 8:00 PM	Type File folder File folder File folder File folder File folder	Size	
							∧ Hide Folders				<u>S</u> ave	Cancel
All samples are finished, tota	l time: 110.892	minutes.										
						100%	CytoGpo	mix Inc. Con	vriaht 202)1		

Post-processing: Metaphase cell image viewer

Segmented objects have colored contours. **Red** indicates DCs, yellow indicate chromosomes that were initially classified as DC, but eliminated based on FP morphology filters, green contours indicate MCs, and blue indicate objects failing ILL segmentation. No highlight: Nuclei, inseparable chromosome clusters, artifacts etc. Controls below image direct inclusion/exclusion of images from dose calculation.

Distribution of (Chromosome) Objects in a Set of Metaphases

- Metaphases must have objects in the user-specified range
 - Cell elimination of [<25-35, >60-75 objects] is recommended

ADCI can process images which have not been manually preselected. Thus, it was necessary to derive a set of filters to remove suboptimal images. Object count is one such filter. 2021

\checkmark

Example: Results of applying an image selection model

Examples of metaphase images in sample HCS05 (0.5Gy) ; unselected and selected by the 'group bin distance model, top ranked 250 images'*. (A) and (B) are selected images. (C) and (D) are images that have been eliminated by the modenix Inc. Copyright Liu, Liet al. F1000Res. 2017, 6:1396

Demonstration: Determine an optimal image selection model

ADCI filters out suboptimal metaphase images by utilizing image selection models.

The effectiveness of a specific image selection model on calibration samples can be evaluated by observing the pvalue of the Poisson fit for each sample, curve fit residuals, and leave-one-out dose estimation.

The <u>"Optimal Image Selection Model Search" wizard</u> automatically evaluates a large pool of image selection models and ranks them according to the selected evaluation method. This process takes significantly longer if the evaluation process is leave-one-out dose estimation as much of the evaluation process must be repeated with each calibration sample removed. Soptimal Image Selection Model Search

Configuration Summary

Generated Models: 186624 combined z-score models 186624 models in total

Evaluation Method: Leave-One-Out. It leaves one sample out as test sample and takes others as calibration samples in iterations (at least 4 different doses required). It create a calibration curve using calibration samples and calculates dose estimation error for the test sample. The errors are combined in 2*(sum of squares). A smaller score indicates a better image selection model

Evaluating Samples: HC_Calibration_1.96Gy Dose 0 Gy full metaphases only Dose 0.1 Gy full metaphases only Dose 0.5 Gy full metaphases only Dose 0.25 Gy full metaphases only Dose 0.74 Gy full metaphases only Dose 0.98 Gy full metaphases only Dose 1.46 Gy full metaphases only Dose 2.92 Gy full metaphases only Dose 3.9 Gy full metaphases only Using SVM Sigma 1.4

earch is in progress			Time to finish:	Click to check
		2%	Start	Abort
arch Results				
	Description of the I	mage Selection Mode	9	
	Transa Euclusian Eilt			
	Exclude	If Length-W	/idth Ratio z-scor	re > 1.5 🔹
	Exclude	If Centromere Candida	te Density z-scor	re > 1.5 🗘
	Exclude	If Centromere Candida If Finite D	te Density z-scor	re > 1.5 🜩
	Exclude	If Centromere Candida If Finite D If Object Co	te Density z-scor oifference z-score ount < 40	re > 1.5 + e < -1.5 + or > 60 +
	Exclude Exclude Exclude Exclude Exclude	If Centromere Candida If Finite D If Object Co If Segmented Co	te Density z-scor ofference z-score ount < 40	re > 1.5 $\textcircled{\bullet}$ e < -1.5 $\textcircled{\bullet}$ or > 60 $\textcircled{\bullet}$ or > 50 $\textcircled{\bullet}$
	Exclude Exclude Exclude Exclude Exclude Exclude Exclude	If Centromere Candida If Finite D If Object Co If Segmented Co If Cla	te Density z-scor difference z-score $dunt < 40dunt < 35dunt < 35dunt < 35$	re > 1.5 e < -1.5 or > 60 or > 50 atio < 0.70 e
	Exclude Exclude Exclude Exclude Exclude Exclude Exclude Exclude Image Ranking and	If Centromere Candida If Finite D If Object Co If Segmented Co If Cla Inclusion	te Density z-scor ifference z-score punt < 40 ount < 35 ssified Object Ra	$re > 1.5 \textcircled{\bullet}$ $e < -1.5 \textcircled{\bullet}$ or > 60 \textcircled{\bullet} or > 50 \textcircled{\bullet} atio < 0.70 $ \textcircled{\bullet}$
	Exclude Exclude Exclude Exclude Exclude Exclude Image Ranking and Image quality ranking m	If Centromere Candida If Finite D If Object Co If Segmented Co If Cla Inclusion nethod: None	te Density z-scor ount < 40 ount < 35 ssified Object Ra	re > 1.5 + compared relationship (1.5) + compared relation (1.5) + c
More Save	Exclude Exclude Exclude Exclude Exclude Exclude Exclude Image Ranking and Image quality ranking m	If Centromere Candida If Finite D If Object Co If Segmented Co If Cla Inclusion nethod: None	te Density z-scor ofference z-score ount < 40 ount < 35 ssified Object Ra	re > 1.5 \Rightarrow e < -1.5 \Rightarrow or > 60 \Rightarrow or > 50 \Rightarrow atio < 0.70 \Rightarrow

 \sim

Poisson distribution of DCs in a sample prior to and post-image selection

Screenshots of proportionate DC frequencies fit to Poisson distributions of Sample HC4Gy in ADCI. **(A)** All images are included (*no image selection*), **(B)** Only images selected by model (group bin distance, top 250 images) are included. The legend (top right) indicates the statistics of the fit to the Poisson distribution (Dispersion Index, Mu test, and Lambda) and the Chi-square goodness of fit test (p-value).

Demonstration: Create calibration curve

Cancel

Next

The <u>calibration curve wizard</u> is prepopulated with the physical dose of calibration samples if doses appear in the sample ID, otherwise the dose must be modified from "Unknown" to the known physical dose. Once created, calibration curves can be saved to the "Persistent ADCI Data" directory.

> Curve Calibration Wizard ←

Select Samples

Select processed samples to be used as calibration samples

The list below presents processed samples loaded in ADCI. Check the box beside each sample you wish to use. If a desired sample is not present in the list, load it into ADCI first.

- Dose 0.1 by full metaphases only	0.1	
Dose 0.5 Gy full metaphases only	0.5]
Dose 0.25 Gy full metaphases only	0.25]
Dose 0.74 Gy full metaphases only	0.74]
Dose 0.98 Gy full metaphases only	0.98]
Dose 1.46 Gy full metaphases only	1.46]
Dose 2.92 Gy full metaphases only	2.92]
Dose 3.9 Gy full metaphases only	3.9]
HC INTC03S01	Unknown]
HC INTC03S04	Unknown]
HC INTC03S05	Unknown]

rief description for the curve to be created fit method: Maximum-Likelihood ation samples: HC_Calibration_1.96Gy Dose 0 Gy full meta 0.1 Gy full metaphases only Dose 0.5 Gy full metaphases metaphases only Dose 0.74 Gy full metaphases only Dose	aphases	a only
fit method: Maximum-Likelihood ation samples: HC_Calibration_1.96Gy Dose 0 Gy full met. 1.1 Gy full metaphases only Dose 0.5 Gy full metaphases metaphases only Dose 0.74 Gy full metaphases only Dos	aphases	s only
hases only Dose 1.46 Gy full metaphases only Dose 2.92 hases only Dose 3.9 Gy full metaphases only	only Do se 0.98 Gy full	Gy full
e fitting. This section has been automatically prepopulate	d by the	e wizar
Sigma 1.4 🔻		
ed image selection model	Spec	cify File
istent_ADCI_Data/SelectionModels/HC_LOO_178981.ad	ciimage	selecti
Response data		
Sample Info	Dose	Res
HC_Calibration_1.96Gy_Sigma 1.4_0.113	1.96	0.11
Dose 0 Gy full metaphases only_Sigma 1.4_0.023	0	0.02
Dose 0.1 Gy full metaphases only_Sigma 1.4_0.030	0.1	0.030
Dose 0.5 Gy full metaphases only_Sigma 1.4_0.050	0.5	0.050
Dose 0.25 Gy full metaphases only_Sigma 1.4_0.033	0.25	0.03
		0.00
		>
	e fitting. This section has been automatically prepopulate isigma 1.4 ed image selection model sistent_ADCI_Data/SelectionModels/HC_LOO_178981.ad -Response data Sample Info HC_Calibration_1.96Gy_Sigma 1.4_0.113 Dose 0 Gy full metaphases only_Sigma 1.4_0.023 Dose 0.1 Gy full metaphases only_Sigma 1.4_0.030 Dose 0.5 Gy full metaphases only_Sigma 1.4_0.030 Dose 0.25 Gy full metaphases only_Sigma 1.4_0.033	e fitting. This section has been automatically prepopulated by the Sigma 1.4 ed image selection model Special sistent_ADCI_Data/SelectionModels/HC_LOO_178981.adciimage -Response data Sample Info Dose HC_Calibration_1.96Gy_Sigma 1.4_0.113 1.96 Dose 0 Gy full metaphases only_Sigma 1.4_0.023 0.1 Dose 0.1 Gy full metaphases only_Sigma 1.4_0.030 0.1 Dose 0.5 Gy full metaphases only_Sigma 1.4_0.030 0.5 Dose 0.25 Gy full metaphases only_Sigma 1.4_0.033 0.25

Screenshot of calibration curve (solid line) showing 95% confidence intervals (dotted lines). Parameters: Sigma = 1.5; Image selection model: top 250 ranked images sorted by combined Z-score method, for individual Z score tests I-VI, results weighted in proportion to: [5,2,4,3,4,1] for each test. This weighting combination is one of the optimal parameters found in a grid search on calibration data.

Demonstration: Estimate dose

The dose estimation wizard requires a set of samples of unknown dose, a calibration curve, and the associated image selection model.

The Plot and Console sections of the ADCI user interface are automatically populated when dose estimation is complete.

Results presented here mirror those described in *Rad. Prot. Dosimetry* **186(1)**: 42-47, 2019.

· · ·						
C	Frequencies for Dose Estimation		0.0.41.6			
	Name	DC Frequency	SVM Info			
1	HC INTC03S01_Sigma 1.4_0.2	37 0.286667	Sigma 1.4	Images a	re sele	
2	HC INTC03S04_Sigma 1.4_0.3	17 0.316667	Sigma 1.4	lmages a	re sele	
3	HC INTC03S05_Sigma 1.4_0.2	20 0.22	Sigma 1.4	lmages a	re sele	
4	HC INTC03S07_Sigma 1.4_0.4	27 0.426667	Sigma 1.4	lmages a	re sele	
5	HC INTC03S08_Sigma 1.4_0.1	7 <mark>3</mark> 0.173333	Sigma 1.4	lmages a	re sele	
6	HC INTC03S10_Sigma 1.4_0.1	10 0.11	Sigma 1.4	lmages a	re sele	
<					>	
	(+) Input	D Import	×	Remove		
	0.	<u> </u>				
P	artial-body analysis					
P	artial-body analysis					
P	artial-body analysis Enable Dose 37% of cells survive (Gy)	.5			<u>^</u>	
	artial-body analysis Enable Dose 37% of cells survive (Gy)	.5			*	
P [0	artial-body analysis Enable Dose 37% of cells survive (Gy) Gy calibration sample in curve	.5			* *	
	artial-body analysis Enable Dose 37% of cells survive (Gy) Gy calibration sample in curve Curve used for dose estimation	.5			* *	
	artial-body analysis Enable Dose 37% of cells survive (Gy) Gy calibration sample in curve Curve used for dose estimation HC_Automated178981	.5		Sigma	÷ •	Cor
	artial-body analysis Enable Dose 37% of cells survive (Gy) Gy calibration sample in curve Curve used for dose estimation HC_Automated178981 Attached image selection model:	.5		Sigma	* ×	Cor
	artial-body analysis Enable Dose 37% of cells survive (Gy) Gy calibration sample in curve Curve used for dose estimation HC_Automated178981 Attached image selection model: der/Persistent_ADCI_Data/Select	.5 onModels/HC_LOO_	178981.adci	Sigma	1.4	Cor
	artial-body analysis Enable Dose 37% of cells survive (Gy) Gy calibration sample in curve Curve used for dose estimation HC_Automated178981 Attached image selection model: der/Persistent_ADCI_Data/Select Description:	.5 onModels/HC_LOO_	_178981.adci	Sigma	• • 1.4 tion	
	artial-body analysis Description: Curve fit method: Maximum-Likel Curve fit method: Maximum Curve fit method: Ma	.5 onModels/HC_LOO_ hood	178981.adci	Sigma	• 1.4	Cor
	artial-body analysis Description: Curve fit method: Maximum-Likel Calibration samples: HC_Calibration	.5 onModels/HC_LOO_ hood on_1.96Gy Dose 0 0 'Dose 0.5 Gy full me	_178981.adci Gy full metapl etaphases on	Sigma imageselect hases only ly Dose 0.2	1.4 ion	
	artial-body analysis Description: Curve fit method: Maximum-Likel Calibration samples: HC_Calibration Curve fit method: Maximum-Likel Calibration samples: HC_Calibrati Dose 0.1 Gy full metaphases only Dose 0.7 Gy full metaphases only Dose 0.46 Gy fi	.5 onModels/HC_LOO_ hood on_1.96Gy Dose 0 C Dose 0.5 Gy full me '4 Gy full metaphase ull metaphases only '	_178981.adci	Sigma imageselect hases only ly Dose 0.2 0.98 Gy full y full	1.4 ion	
	artial-body analysis Description: Curve fit method: Maximum-Likel Calibration samples: HC_Calibrati Curve fit method: Maximum-Likel Calibration samples: HC_Calibrati Dose 0.1 Gy full metaphases only Dose 1.46 Gy ful	.5 onModels/HC_LOO_ hood on_1.96Gy Dose 0 0 Dose 0.5 Gy full me t4 Gy full metaphases ill metaphases only metaphases only	178981.adci Gy full metapl etaphases on so only Dose 1 Dose 2.92 Gy	Sigma imageselect hases only ly Dose 0.2 0.98 Gy full y full	1.4 5	
	artial-body analysis Description: Curve fit method: Maximum-Likel Calibration samples: HC_Calibration Cose 0.1 Gy full metaphases only Dose 1.46 Gy fit metaphases only Dose 3.9 Gy full	.5 onModels/HC_LOO_ hood on_1.96Gy Dose 0 C Dose 0.5 Gy full metaphases ill metaphases only 1 metaphases only	178981.adci Gy full metapl etaphases on sonly Dose I Dose 2.92 Gy	Sigma imageselect hases only ly Dose 0.2 0.98 Gy full y full	1.4 5	

_																			_
	Feb 4 17:14:49 Dose Estimation using Curve: HC_Automated178981															^			
Dose Estimation Result																			
l																			
l		DC 1	Frequency	Name				DC Frequency		SVM			Estimated Dose		Dose 95%	LCL	1	Dose	
l	I.	~HC	INTC03S0:	l_Sigma	1.4_0	0.287	1	0.286667	T	Sigma	1.4	Т	3.60Gy	I.	Disabled		1	Disa	
l	L	~HC	INTC03S04	4_Sigma	1.4_0	0.317	1	0.316667	T	Sigma	1.4	T	*3.90 Gy	T	Disabled		1	Disa	
l	L	~HC	INTC03S08	5 Sigma	1.4 0	0.220	1	0.22	T	Sigma	1.4	T	2.75Gy	T	Disabled		\mathbf{I}	ק∕i∂	
l	L	~HC	INTC03S0	7_Sigma	1.4 0	0.427	1	0.426667	T	Sigma	1.4	T	*3.90 Gy	T	Disabled	_	1)is .	2
l	L	~HC	INTCOSSO	3 Sigma	1.4 0	0.173	1	0.173333	T	Sigma	1.4	T	2.15Gy	T	Disabled		1	Disc	
l	L	~HC	INTC03S1	Sigma	1.4 0	0.110	1	0.11	T	Sigma	1.4	T	1.25Gy	T	Disabled)is.	b
l	1	2	+	-					/1	dette	-+	0	A-9-4						¥
l	k	ァV	UGI	IUH	IIX		U	-000	/	101	IL.	4	UZ I					>	
1																			

Demonstration: Estimating partial-body (PB) dose, confidence interval and fraction cells irradiated

DC Frequency Name	L	DC Frequency	T	SVM			Estimated Dose	T	PB Estimated Dose	T	PB Dose LCL	T	PB Dose UCL	T	PB Cells Exposed
~Test_PHE_A_Sigma 1.4_0.099	I.	0.0990502	T	Sigma	1.	1	1.85Gy	-I	2.30Gy	T	1.20Gy	T	3.15Gy	T	80.71%
Test_PHE_B_Sigma 1.4_0.255	I.	0.254667	Т	Sigma	1.	1	3.75Gy	-I	4.20Gy	T	3.60Gy	T	4.75Gy	T	94.94%
~Test_PHE_C_Sigma 1.4_0.044	I.	0.0443828	Т	Sigma	1.	1	0.50Gy	-I	1.50Gy	-I	*0.00Gy	T	2.85Gy	Т	46.72%
~Test_PHE_D_Sigma 1.4_0.035		0.0346667	1	Sigma	1.	1	*0.00 Gy		2.95Gy	T	*0.00Gy	T	4.85Gy	T	17.40%
~Test_PHE_E_Sigma 1.4_0.087	1	0.0866667	Т	Sigma	1.	1	1.60Gy	1	5.20Gy	Т	4.00Gy	Т	6.20Gy	Т	47.68%
~Test_PHE_F_Sigma 1.4_0.076	1	0.076	Т	Sigma	1.	1	1.40Gy	1	2.25Gy	Т	0.90Gy	Т	3.20Gy	Т	65.76%
~Test_PHE_G_Sigma 1.4_0.081	I.	0.0813333	I	Sigma	1.	1	1.50Gy	I	3.55Gy	I	2.30Gy	I	4.55Gy	I	52.41%

Often, radiation accident (and therapy) patients receive inhomogeneous exposures. In ADCI, partial-body dose estimation uses the OGy calibration sample in the selected calibration curve to reduce false positive dicentric chromosomes to estimate partialbody exposure and fraction of cells irradiated (*Int J Rad Biol.* **96(11)**: 1492-1503, 2020).

When this option is enabled, estimates of the partial-body dose and fraction of cells exposed are shown in the ADCI console and reports (PHE -E, -F, -G above), in addition to the standard output generated when analyzing homogeneously irradiated samples.

Dose Calculator

? X

		Name	DC Frequency	SVM Info							
	1	Test_PHE_A_Sigma 1.4_0.099	0.0990502	Sigma 1.4	Images are select						
	2	Test_PHE_B_Sigma 1.4_0.255	0.254667	Sigma 1.4	Images are select						
	3	Test_PHE_C_Sigma 1.4_0.044	0.0443828	Sigma 1.4	Images are select						
	4	Test_PHE_D_Sigma 1.4_0.035	0.0346667	Sigma 1.4	Images are select						
	5	Test_PHE_E_Sigma 1.4_0.087	0.0866667	Sigma 1.4	Images are select						
	6	Test_PHE_F_Sigma 1.4_0.076	0.076	Sigma 1.4	Images are select						
	7	Test_PHE_G_Sigma 1.4_0.081	0.0813333	Sigma 1.4	Images are select						
	<				>						
		(+) Input	Import		Ӿ Remove						
	P	artial-body analysis									
	5	✓ Enable									
	D	ose 37% of cells survive (Gy)	3.5	+							
	0Gy calibration sample in curve Calibration_PHE_0.0Gy Curve used for dose estimation										
	PHE_C_B750 Sigma 1.4										
	A	Attached image selection model:									
УI		Home Folder/Persistent_ADCI_D	ata/SelectionMode	els/C_B750.a	dciimageselection						
-											

Demonstration: Generate and access written reports

ADCI_Online generates several report types including:

- Calibration curve
- Sample _____
- Optimal image selection model
- Dose estimation

Reports are displayed in a web browser during the streaming session.

Alternatively, saved reports can be downloaded from the user's AWS S3 folder at the end of the subscription period.

	H (D) 🗁	() X Ju				Fn 🗸 🛛 Rnewuser@cytognomix.com 🗸
	ADCI Samples Curves AD					– 0 ×
	Samples	Number of such images	y Fil 🔎 👻 696	c) 🖉 s	ample repo	nt × 命公感 🥹
	Identit	Frequency of such images	0.928	0.068	0.004	
	1 Calibration_PH	Frequency in Poisson	0.927	0.070	0.003	
	2 Calibration_PH 3 Calibration_PH	Test_PHE_G				
	4 Calibration_PH	Distribution of DCs detected in 7 Result of SVM 1.4; FP flag: 126; Folder/Persistent_ADCI_Data/Se Poisson Fitting Stats: Lambda (av square test 8.251e-3	50 image Image se lectionM verage D0	es in samp election r lodels/C_ Cs per in	ple: Test_ nodel: in _B750.ad nage) 0.08	PHE_G ages are selected by C:/Users/PhotonUser/My Files/Home itimageselection 313333; Dispersion Index 1.11688; Mu 2.28058; p value of Chi- -quartle: 6.4 -quartle: 6.4
	Curves Curve Identity	Number of DCs in an image	0	1	2	Max: 55.4 At 2\$0th image: 3.0
	1 PHE_C_B750	Number of such images	695	49	6	អ្នដ្ឋទី09រង្វា image: 5.2 ige: 5.8
		Frequency of such images	0.927	0.065	0.008	
		Frequency in Poisson	0.922	0.075	0.003	
e S		SVM Sigma value: 1.	.5			Test Prite Prite G
		Test_PHE_A - 1.5			Test_P	HE_B - 1.5 Test_PHE_C - 1.5
	ADCI Process Queue	0.8 Beed 0.7	Dersion I Mu T Lamb P Value	ohase 0.	7 6	Dispersion I 0.9 Mu Tr Lamb See 0.75 P Value e 0.75 Dispersion In Mu Te Lambd return Value 4 1.85Gy 4 3.75Gy 4 0.50Gy 4 0.00 Gy 4 1.60Gy
						~Test_PHE_F_Sigma 1.4_0.076 0.076 Sigma 1.4 1.40Gy ~Test_PHE_G_Sigma 1.4_0.081 0.0813333 Sigma 1.4 1.50Gy CL: confidence limit. LCL, UCL: lower, upper CL. *(if present in table): the estimated dose or dose CL is out of bounds.
		С	yto	Gno	omix	c Inc. Copyright 2021

Demonstration: Download reports

Upon completion of a subscription, any reports generated by the user are compressed as a single zip file and moved to a user-specific "download" directory where they can be downloaded to the Users local computer. The user accesses the data by accessing S3 as they did when uploading metaphase images.

Amazon S3 > appstream2	e3beea5e9a0f9e98	> download/ > 0e1add9239ae3beea5e9a0f9e98aa Baabbabff9aeaaf37e7c20f47	bbabff9aeaaf37e7c20f47529e1e02df8b2/
Objects Folder pro	perties		
Objects (1) Objects are the fundamental C Delete Q Find objects by pred	entities stored in Amazon S3. For others to a Actions Open Calculate total size	access your objects, you'll need to explicitly grant them permissio	ns. Learn more 🔀
✓ Name	Сору	Last modified	⊽ Size
🗹 🌓 reports.zip	Move	February 4, 2021, 15:29:40 (UTC-05:00)	24.8
	Initiate restore		
	Query with S3 Select		
	Download actions		
	Download		
	Download as	CvtoGnomix Inc.	Copyright 2021

Estimated time requirements

- Estimating sample processing time
 - When processing a set of samples, obtain an estimate of total processing time in minutes by summing image counts in all samples and dividing by 19.659 (the approximate number of images processed in one minute on ADCI_Online).
- Calibration sample processing
 - Assuming 7 calibration samples
 - 3 samples < 1 Gy (1500 images), 4 samples >= 1 Gy (750 images)
 - **7500** metaphase images in calibration samples
 - 7500 / 19.659 = 381.5 min (6 hr, 22 min)
- Automated Image selection model generation
 - An optimal image selection model must be determined only once for a set of calibration samples
 - Examine all model categories, curve fit residuals or p-value of Poisson fit evaluation modes: ~94 min (1 hr, 34 min)
 - Examine all model categories, Leave-one-out evaluation mode: ~233 min (3 hr, 53 min)
- Test sample processing
 - Assuming 7 homogeneously irradiated samples (700 images each) and 3 partially irradiated (1200 images each)
 - 8500 metaphase images in test samples
 - 8500 / 19.659 images = 432.4 min (7 hr, 12 min)
- Other categories of operations require little to no processing time, therefore the time required to perform them is limited by the operator's knowledge of the system. It is recommended to consult ADCI_Online documentation before a subscription begins. Time estimates below assume a moderately experienced operator:
 - Optional: Review of processed samples in the metaphase image viewer (variable)
 - Review of automatically generated image selection models, pre-existing, supplied models, or manual created models (30 variable min).
 Manual creation and review of image selection models is an optional process and may require several hours.

CytoGnomix Inc. Copyright 2021

- Calibration curve generation (5 30 min)
- Dose estimation (5 30 min)
- Report generation and review (10 120 min)

Summary

- ADCI offers a cost-effective subscription-based service useful for radiation research, proficiency testing, inter-laboratory comparisons, and training.
- Security of data was considered at every step of the development process, with images and results encrypted and stored in an S3 Bucket directory accessible only to them.
- ADCI_Online can be rapidly scaled to meet "burst" requirements such as individuals in an emergency situation requiring processing of many samples.

ADCI weblinks

Introduction and access to demonstration version

https://radiation.cytognomix.com

Partnerships and contact e-mail address

info@cytognomix.com

How ADCI works (online manual)

https://adciwiki.cytognomix.com

Dicentric chromosome classification by machine learning

https://cytobiodose.cytognomix.com

ADCI protocol in the Journal of Visualized Experiments (JoVE)

https://doi.org/10.3791/56245

To obtain ADCI

https://radiation.cytognomix.com/quoterequest.php

CytoGnomix Inc. Copyright 2021