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Abstract
The widespread use of next generation sequencing for clinical testing is detecting an escalating

number of variants in noncoding regions of the genome. The clinical significance of the majority

of these variants is currently unknown, which presents a significant clinical challenge. We have

screenedover6,000early-onset and/or familial breast cancer (BC) cases collectedby theENIGMA

consortium for sequence variants in the 5′ noncoding regions of BC susceptibility genes BRCA1

andBRCA2, and identified 141 rare variantswith globalminor allele frequency< 0.01, 76 ofwhich

havenotbeen reportedpreviously. Bioinformatic analysis identified a set of 21variantsmost likely

to impact transcriptional regulation, and luciferase reporter assays detected altered promoter

activity for four of these variants. Electrophoreticmobility shift assays demonstrated that three of

these altered the binding of proteins to the respective BRCA1 or BRCA2 promoter regions, includ-

ing NFYA binding to BRCA1:c.-287C>T and PAX5 binding to BRCA2:c.-296C>T. Clinical classifica-

tion of variants affecting promoter activity, using existing predictionmodels, found no evidence to

suggest that these variants confer a high risk of disease. Further studies are required to determine

if such variationmay be associated with amoderate or low risk of BC.

K EYWORDS

breast cancer, BRCA1, BRCA2, promoter, transcription, variants of unknown clinical significance

(VUS)

1 INTRODUCTION

Genetic susceptibility to breast cancer (BC) is complex. Multiple

germline variants have been identified over the past 25 years that are

broadly categorized as high, moderate, and low risk. High-risk variants

are generally rare, have a major deleterious effect on gene function,

are sufficient to confer a high risk of disease, and are highly penetrant

within a family. Nonsense, splicing, large deletions, and somemissense

changes inBRCA1 andBRCA2 fall into this category (reviewed inWalsh

et al., 2006). There is also evidence that some alleles confer a moder-

ate risk of cancer. These can include hypomorphic variants in known

“high-risk” cancer syndrome genes (Shimelis et al., 2017; Spurdle et al.,

2012), or clear loss-of-function alleles in other genes such as CHEK2,

PALB2, and ATM (Couch et al., 2017). Low-risk variants, largely iden-

tified by genome-wide association studies, are usually common and

cause subtle functional effects, such as small but significant changes

in gene expression due to altered activity of proximal and distal

regulatory elements (reviewed in Bogdanova, Helbig, & Dork, 2013;

Ghoussaini, Pharoah, & Easton, 2013; Skol, Sasaki, & Onel, 2016).

Evidence suggests that combinations of low, moderate, and high-risk

variants could confer a clinically significant risk of disease (Ding et al.,

2012; Kuchenbaecker et al., 2017; Sawyer et al., 2012). Identification

and evaluation of all such variants is therefore crucial for accurately

predicting BC risk.

Use of next generation sequence analysis for germline clinical test-

ing of cancer cases is identifying an increasing number of variants in

noncoding regions of cancer susceptibility genes, including promot-

ers, untranslated regions (UTRs), and introns. There are currently no

firm recommendations for assessing the relevanceof noncoding region

variants to clinical testing of Mendelian disease genes, and so the vast

majority of such variants are deemed of uncertain clinical significance.

This adds to the clinical challenge presented by variants of uncertain

significance, namely that they complicate test reporting and genetic

counseling, limit patient eligibility for intensive surveillance and gene-

targeted therapies, and prevent gene testing and guided management

of relatives (reviewed inAmendola et al., 2015; Eccles et al., 2013; Plon

et al., 2011). It is therefore essential that the functional and clinical sig-

nificance of variants mapping to noncoding regions of the genome is

determined.

Gene expression is controlled at many levels with key regulatory

elements being housed in noncoding regions of the genome, such as

gene promoters, introns, long-range elements, and 5′ and 3′ UTRs.

The BRCA1 gene is regulated at the transcriptional and posttranscrip-

tional levels, with functional proximal and distal regulatory elements

being described in the promoter, introns, and UTRs, by us and others

(Brewster et al., 2012; Brown et al., 2002; Santana dos Santos et al.,

2017; Saunus et al., 2008; Tan-Wong, French, Proudfoot, & Brown,

2008; Wardrop, Brown, & kConFab, 2005; Wiedemeyer, Beach, &

Karlan, 2014). Although less studied, the BRCA2 promoter has also

beenmappedandcharacterized (reviewed inWiedemeyer et al., 2014).

Common and rare variations in regulatory elements upstream of

genes have been shown to alter gene expression and be associ-

ated with disease risk (reviewed in Betts, French, Brown, & Edwards,

2013; Diederichs et al., 2016; Millot et al., 2012). We and others

have described germline cancer-associated variants in the regula-

tory regions, including large deletions in the BRCA1 promoter (Brown

et al., 2002), and single nucleotide variants in the promoter and/or
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5′ UTR of BRCA1 and BRCA2 (Evans et al., 2018; Santana dos San-

tos et al., 2017), MLH1 promoter (Hitchins et al., 2011), POLG pro-

moter (Popanda et al., 2013), PTEN promoter (Heikkinen et al., 2011),

TERT promoter (Horn et al., 2013), KLHDC7A and PIDD1 promoters

(Michailidou et al., 2017), BRCA1 3′ UTR (Brewster et al., 2012), and

BC-associated Single Nucleotide Polymorphisms (SNPs) in long-range

enhancers of CCND1 (French et al., 2013).

Cancer risk-associated variantswithin regulatory regions are antic-

ipated to mediate an effect on trans-acting regulatory factors (e.g.,

transcription factors [TFs] and miRNAs), by disrupting binding of reg-

ulatory factors and interactions between regulatory elements, such

as promoter–enhancer interactions. For example, a variant in a Cyclin

D1 transcriptional enhancer has been associated with altered binding

of the ELK4 TF (French et al., 2013) and a variant within the BRCA1

3′UTR has been shown to introduce a functional mir-103 binding site

(Brewster et al., 2012). In addition, a dominantly inherited 5′ UTR

BRCA1 variant was recently shown to be associated with BRCA1 pro-

moter hypermethylation, which is known to impact TF binding, and

associated allelic loss of BRCA1 expression in two families affected by

breast and ovarian cancers (Evans et al., 2018).

In this paper, we describe 141 germline variants in the BRCA1 and

BRCA2 promoter, identified bymembers of the ENIGMAconsortium in

early onset or familial BC patients with no known pathogenic variants

in the coding region of these genes. Using a combination of bioinfor-

matic and experimental analyses, we have prioritized and analyzed a

subset of variants that aremost likely to affect the regulation ofBRCA1

and BRCA2 and thus have the most potential to contribute to BC risk.

TF binding site affinity changes resulting from these variantswere sub-

sequently analyzedby information theory (IT)-based analyses. In paral-

lel, we have assessed if these variants exhibited the features expected

for a high-risk pathogenic BRCA1 or BRCA2 variant, on the basis of

available clinical and population data.

2 MATERIALS AND METHODS

2.1 Study design

Anoverviewof the study design is shown in Figure 1. Collection of vari-

ants at all sites enabled an initial catalogue of variants fromwhich vari-

ants were prioritized for functional analysis. Additional screening was

carried out at three sites, Maastricht (M), Santiago (S), and Prague (Pr),

that included additional patients (M, S, and Pr) and controls (Pr) that

expanded the list of variants (Pr), the number of patients (M, S, and Pr),

and included control subjects (Pr).

2.2 Clinical and control samples

Clinical and genetic data were collected and analyzed in accordance

with local human ethics guidelines of the institutions contributing to

this study. All participating individuals provided informed consent for

their data to be used for research purposes. An overview of the sam-

ples analyzed is shown in Table 1. Clinical samples were collected

from nine European sites and were originally selected for BRCA1 and

BRCA2 testing using ascertainment criteria that included family history

F IGURE 1 Overview of study design. Outline of the workflow of
variant collection, prioritization and analysis

and young age of BC diagnosis. Female patients who did not carry a

pathogenic variant in BRCA1 or BRCA2 coding regions or splice junc-

tions were selected for testing of variation in the BRCA1 and BRCA2 5′

regions. The controls were as follows: 661 healthy female individuals

recruited through the Immunohematology and Transfusion Medicine

Service of INT and Associazione Volontari Italiani Sangue (AVIS) of

Milan; 312 healthy females above 60 years of age and with no malig-

nancy in the first filial generation recruited through First Faculty of

Medicine, Charles University in Prague (Lhota et al., 2016; Soukupova,

Zemankova, Kleiblova, Janatova, & Kleibl, 2016); and 130 healthy

femaleswithout cancer diagnosis recruited in Santiago deCompostela.

2.3 Identification of variants

Regions containing the BRCA1 and BRCA2 promoter and 5′ UTR

were sequenced using a range of standard DNA sequencing tech-

nologies, and bioinformatic filtering pipelines. Variants mapping to the

2,400 bp region (hg19; chr17:41,278,514 – 41,276,114) of BRCA1

and the 2,000 bp region (hg19; chr13: 32,888,597-32,890,597) of

BRCA2 were considered for further analysis. The identified vari-

ants in BRCA1 and BRCA2 5′ noncoding regions are numbered

whereby the first translated nucleotide of the translation initiation

codon is +1 (https://varnomen.hgvs.org/) using the Mutalyzer website

(https://mutalyzer.nl/). BRCA1 is described using NC_000017.10 (hg19

genomic sequence) andNM_007294.3 (transcript).BRCA2 is described

using NC_000013.10 (hg19 genomic sequence) and NM_000059.3

(transcript).

https://varnomen.hgvs.org/
https://mutalyzer.nl/
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TABLE 1 Samples used in this study

Location Institution Samples Gene region

Paris Institut Curie, Saint Cloud 686 cases BRCA1 5′region, BRCA2 5′region

Milan IFOM, Fondazione Instituto FIRC di Oncologia
Molecolare

772 cases
661 controls

BRCA1 5′region

Pisa Department of Translational Research andNew
Technologies inMedicine, University of Pisa

80 cases BRCA1 5′region, BRCA2 5′region

Santiago de
Compostela

Fundación Pública Galega deMedicina
Xenómica-SERGAS, Grupo deMedicina
Xenómica-USC, CIBERER, IDIS

270 cases
130 controls

BRCA1 5′region, BRCA2 5′region

Copenhagen Center for GenomicMedicine 1157 cases BRCA1 5′region, BRCA2 5′region

Ghent Center forMedical Genetics, Ghent University
Hospital

357 cases BRCA1 5′region, BRCA2 5′region

Barcelona Vall d'Hebron Institute of Oncology 192 cases BRCA1 5′region, BRCA2 5′region

Prague CZECANCA –CZEch CAncer panel for Clinical
Aplication, Institute of Biochemistry and
Experimental Oncology

2961 cases
312 controls

BRCA1 5′region, BRCA2 5′region

Maastricht Department of Clinical Genetics, Maastricht
UniversityMedical Centre

900 cases BRCA2 5′region

2.4 Bioinformatic analysis of variants

As an initial screen, each variant submitted for study was assessed

for population frequency using intersection of the variants with

dbSNP (version 138 or 150, as the study progressed) within the

UCSC Genome browser and Variant Effect Predictor at ENSEMBL

(https://www.ensembl.org/info/docs/tools/vep/index.html). Variants

with a global minor allele frequency (MAF) of < 0.01 were included in

subsequent bioinformatic analyses. Further details of bioinformatics

analyses to map active regulatory elements and prioritize variants for

functional assays are contained in Supporting Information Methods.

Variants were considered to be high priority for experimental analysis

if they contained all of the following features: (1) resided in DNaseI or

formaldehyde-assisted isolation of regulatory elements (FAIRE) peaks,

(2) coincided with high scores for DNaseI (Base Overlap Signal > 40)

or FAIRE (Base Overlap Signal > 10) in a breast cell line, (3) resided

in a region of breast cell specific TF binding, (4) overlapped with a

TF consensus motif, and (5) were within an evolutionarily conserved

elementwith a high Phastcons score (>0.75).Medium priority variants

lacked one or two of these features, whereas low priority variants had

only one or none of these features.

2.4.1 In silico TF binding analysis

All rare variants were analyzed in silico using an IT-based method

(Caminsky et al., 2016; Mucaki et al., 2016) and a modified version

of the Shannon pipeline utilizing TF information models built from

ENCODE ChIP-seq datasets (Lu, Mucaki, & Rogan, 2017) to assess

potential effects of variants on TF binding. Details of analyses are

contained in Supporting InformationMethods.

2.5 Experimental analysis of variants

2.5.1 Promoter reporter assays

The 499 bp BRCA1 (chr17:41,277,787-41,277,289) and 750 bp BRCA2

(chr13:32,889,230-32,889,979) promoter regions were cloned into

pCR-Blunt vector (Thermo Fisher, Waltham, MA). Site-directed muta-

genesis was used to introduce variants using the primers listed in

Supporting Information Table S1. Plasmids were purified using the

QIAprep miniprep kit (Qiagen, Hilden, Germany) as per the manufac-

turer's instructions. Plasmid preparationswere validated using restric-

tion digest and DNA sequencing and inserts were shuttled into pGL3-

Basic luciferase reporter vector (Promega, Madison, WI). All plasmids

for transfection were analyzed for DNA conformation on a 1% w/v

agarose gel and only plasmids possessing a supercoiled conformation

were used for transfections. Transfection details are described in Sup-

porting InformationMethods.

The luciferase-based reporter assay was performed as described

previously (Brewster et al., 2012). Positive controls were B1-Ets,

BRCA1:c.-330_-329delinsTT, that decreases BRCA1 promoter activ-

ity in MCF7 cells (Atlas, Stramwasser, Whiskin, & Mueller, 2000)

and B2-Ets (E2Fmut1: BRCA2:c.-282_-281delinsAA), that has been

shown to decrease BRCA2 promoter activity in MCF7 cells (Davis,

Miron, Andersen, Iglehart, & Marks, 1999). Statistical analyses were

performed in GraphPad Prism using one-way analysis of variance

followed by Tukey's post hoc test and values P < 0.05 were deemed

statistically significant.

2.5.2 Electrophoretic mobility shift assays

Nuclear proteins were extracted as described in Supporting Infor-

mation Methods and electrophoretic mobility shift assays (EMSAs)

were carried out using a Pierce LightShift Chemiluminescent EMSA

Kit (Thermo Fisher, Waltham, MA) with modifications described in

Supporting Information Methods. For competition and supershift

studies, nuclear extracts were initially incubated with unlabeled

double-stranded (ds) competitor probes or antibodies in binding

buffer before addition of the biotinylated probe and incubation at

room temperature. Positive controls for BRCA1 and BRCA2 DNA

binding were sequences surrounding the B1-Ets and B2-Ets mutations

described above.

https://www.ensembl.org/info/docs/tools/vep/index.html
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2.6 Qualitative and quantitative classification

of variants

Variants were classified according to the ENIGMA classification crite-

ria for variation in BRCA1 and BRCA2 (https://enigmaconsortium.org/)

to determine whether any of the prioritized variants were associated

with a high risk of disease. See Supporting Information Methods for

further details.

3 RESULTS

3.1 Identification and prioritization of sequence

variants in BRCA1 and BRCA2 5´ noncoding regions

The 5′ noncoding regions of BRCA1 and BRCA2 in early onset or famil-

ial BC patients with no known BRCA1 or BRCA2 germline pathogenic

variant were sequenced at nine different sites as part of an approved

ENIGMA (https://enigmaconsortium.org/) project. For the BRCA1 5′

region, 6,475 patients were sequenced at eight different sites along

with 1,103 controls. For the BRCA2 5′ region, 6,603 patients were

sequenced at eight different sites as well as 442 controls.

After excluding variants with global MAF > 0.01 at time of vari-

ant identification, a total of 141 unique single nucleotide variants

and short insertions/deletions were identified, 81 in BRCA1 and 60

in BRCA2 (Supporting Information Tables S2 and S3). Theses variants

have been submitted to the LOVDdatabases, www.lovd.nl/BRCA1 and

www.lovd.nl/BRCA2. Toevaluate thepotential of these rare variants to

impact gene regulation, we initially undertook a comprehensive bioin-

formatic analysis. Promoter regions ofBRCA1 andBRCA2were defined

by bioinformatic predictors including chromatin marks (Figure 2).

These regions show the characteristic histone H3 epigenetic marks,

including H3K4me3, H3K27ac, and H3K9ac, as well as occupancy by

multiple TFs. Of the variants identified in cases only, 22 BRCA1 and 23

BRCA2 variants residedwithin theminimal promoter regions.

To predict the potential impact of variants on promoter activity, we

prioritized variants using breast cell specific data for chromatin acces-

sibility and TF occupancy along with evolutionary conservation. Due

to the limited breast cell specific TF ChIP-seq data, we also included

ENCODE TF ChIP-seq and TF consensus motif data from all cell lines.

A total of nine BRCA1 and 12 BRCA2 variants were selected for further

functional analysis (Figure 2; Tables 2 and 3).

3.2 BRCA1 and BRCA2 promoter activity is altered

by 5′ noncoding sequence variants

To examine the potential effect of the 21 prioritized BRCA1 and BRCA2

5′ noncoding variants on regulatory activity, promoter activity was

measured using luciferase assays in MCF7 and MDA-MB-468 BC cell

lines. Two of the nine prioritized BRCA1 variants decreased BRCA1

promoter activity relative to the wild-type (WT) construct (Figure 3a

and 3b). BRCA1:c.-315del significantly decreased the BRCA1 pro-

moter luciferase activity in both cell lines, whereas BRCA1:c.-192C

decreased luciferase activity in the MCF7 cell line. Furthermore, one

variant, BRCA1:c.-287T, displayed increased activity relative to the

WT construct in theMCF7 cell line. For BRCA2, one of the 12 variants,

BRCA2:c.-296T, decreasedBRCA2 promoter activity relative to theWT

construct in theMCF7 cell line (Figure 3c and 3d).

3.3 In silico analyses of BRCA1 and BRCA2 5′ variants
predict alterations in TF binding

BRCA1 and BRCA2 promoters are regulated by a complex array of

DNA-binding proteins and transcriptional coactivators and core-

pressors (reviewed in McCoy, Mueller, & Roskelley, 2003; Mueller

& Roskelley, 2003; Wiedemeyer et al., 2014). In silico analysis was

carried out to examine whether the BRCA1 and BRCA2 promoter

variants shown to alter luciferase activity (see above) are likely to

affect binding of trans-acting protein factors in breast cells.

Interrogation of ENCODE ChIP-seq datasets derived from breast

cell lines show that, although the number of datasets is limited, TFs

bind to regions encompassing the prioritized variants (Figure 2 and

Supporting Information Figure S1). ENCODE ChIP-seq data from

other cell lines indicate that some variants are located within con-

sensus motifs for specific TFs associated with these regions (Tables 2

and 3; Supporting Information Figure S1). BRCA1:c.-287C>T overlaps

with the consensus binding motif for CCAAT Box binding factors and

BRCA2:c.-296C>T is located within the consensus motif for PAX5.

IT analysis of the prioritized variants showed that the binding

strengths of several TFs are predicted to be altered by the BRCA1

and BRCA2 variants (Table 4 and Supporting Information Table S4). All

of the variants that altered promoter activity were predicted to have

consequences onTFbinding.BRCA1:c.-287C>TandBRCA2:c.-296C>T

are predicted to disrupt binding of CCAAT Box binding factors and

PAX5, respectively.BRCA1:c.-315del is predicted todisrupt thebinding

of TCF7L2 but creates a POU2F2 (also known as Oct-2) binding site.

BRCA1:c.-192T>C is predicted to strengthen a RFX5 site and creates

an ETS1 site.

3.4 5′ variants in BRCA1 and BRCA2 alter
protein–DNA interactions in EMSA analyses

Toexaminepotential alterations in thebindingof nuclear proteins from

breast cells by the BRCA1 and BRCA2 promoter variants that altered

luciferase activity, we carried out EMSA analysis. For BRCA1, two of

three analyzed variants, c.-315del and c.-287C>T, displayed allele-

specific protein binding (Figure 4). For probes containing the region

surrounding the BRCA1:c.-315del variant, changing the WT sequence

to the variant sequence resulted in the enhanced binding of a slower

migrating band (Figure 4a and 4b). For probes containing the region

surrounding the BRCA1:c.-287C˃T variant, introduction of the variant

sequence resulted in almost complete loss of protein binding to the

probe (Figure 4a).

To determine if the DNA-protein interactions were specific, com-

petition experiments were performed. In the case of BRCA1:c.-315del,

all bands were competed by both the WT and the variant containing

probes in two cell lines (Figure 5a and 5b). For BRCA1:c.-287C>T,

only the WT probe was able to compete for binding (Figure 5c). The

nonspecific probe from an unrelated region of the BRCA1 promoter

https://enigmaconsortium.org/
https://enigmaconsortium.org/
http://www.lovd.nl/BRCA1
http://www.lovd.nl/BRCA2
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F IGURE 2 Variants identified in the 5′ regions of BRCA1 and BRCA2map to predicted regulatory elements. Snapshots of the UCSC genome
browser showing regions of BRCA1 (a) and BRCA2 (b) analyzed by targeted sequencing with available ENCODE regulatorymarks derived from
MCF7 cells. Chromatin segregation states from regulatory region annotation are shown (MCF7 states). The BRCA1 and BRCA2 genomic regions
used for functional analyses are highlighted in grey. Prioritized variants within these regions are indicated

TABLE 2 BRCA1 prioritized variants

Gene
hg19 position
(chr17)

Variant
namea rsID

GlobalMAF
in dbSNP

TFmotif
(ENCODE)b

Bioinformatic
priority

BRCA1 g.41277676A>T c.-408T>A Novel CEBPB High/medium

BRCA1 g.41277648C>T c.-380G>A Novel RXRA High/medium

BRCA1 g.41277646G>T c.-378C>A rs186775935 0.00040 RXRA High/medium

BRCA1 g.41277583del c.-315del rs901029407 0.00003 ATF1,2,3, CREB1c Medium

BRCA1 g.41277555G>A c.-287C>T Novel NFYA, NFYB High/medium

BRCA1 g.41277541C>T c.-273G>A rs112960339 0.00499 Medium

BRCA1 g.41277532A>C c.-264T>G rs904148166 0.00003 Medium

BRCA1 g.41277488G>T c.-220C>A Novel Medium

BRCA1 g.41277460A>G c.-192T>C rs113323025 0.00519 Medium

TF, transcription factors.
aBased onNM_007294.3.
bOverlap with TFmotif in ENCODE TF-ChIP datasets from all cells.
cVariant overlaps this motif, but the deletion does not alter themotif sequence.



BURKE ET AL. 7

TABLE 3 BRCA2 prioritized variants

Gene
hg19 Position
(Chr13)

Variant
namea rsID

GlobalMAF
in dbSNP TFmotif (ENCODE)b

Bioinformatic
priority

BRCA2 g.32889437G>A c.-407G>A rs36221751 0.0018 Medium

BRCA2 g.32889449C>T c.-395C>T Novel Medium

BRCA2 g.32889548C>T c.-296C>T rs563971900 0.0004 PAX5 High/medium

BRCA2 g.32889564delG c.-280del Novel ELF1, GABPA, ELK1,4 High

BRCA2 g.32889576C>G c.-268C>G Novel High/medium

BRCA2 g.32889626G>A c.-218G>A Novel Medium

BRCA2 g.32889644C>T c.-200C>T Novel MAZ Medium

BRCA2 g.32889647A>C c.-197A>C rs370721506 NA MAZ Medium

BRCA2 g.32889669C>T c.-175C>T rs55880202 0.0058 Medium

BRCA2 g.32889711T>G c.-133T>G Novel Medium

BRCA2 g.32889757T>G c.-87T>G Novel Medium/low

BRCA2 g.32889762G>C c.-82G>C Novel Medium/low

NA, no data available, TF, transcription factors.
aBased onNM_000059.3.
bOverlap with TFmotif in ENCODE TF-ChIP datasets from all cells.

did not compete any bands showing that the bands seen in the EMSA

were specific.

Analysis of the regionsof theBRCA2promoterusingEMSArevealed

that region containing the BRCA2:c.-296C>T variant bound nuclear

proteins fromMCF7nuclear extracts and that this interactionwas dra-

matically reduced by introduction of the variant sequence (Figure 6a).

Competitionexperiments showed that these interactionswere specific

and not competed by a nonspecific probe from an unrelated region of

the BRCA1 promoter (Figure 6a).

To determine the effect of these variants on the binding of specific

TFs, competition and supershift analyses were performed. BRCA1:c.-

287C>T overlaps with the consensus binding motif for CCAAT Box

binding factors, NFYA and NFYB (Table 2 and Supporting Information

Figure S1a), and IT analysis predicts that the variant disrupts binding

of these TFs (Table 4). Consistent with these predictions, supershift

experiments show that BRCA1:c.-287C>T disrupts binding of NFYA

to this region (Figure. 5d). In addition, we analyzed BRCA2:c.-296C>T,

which maps within the consensus binding motif for PAX5 (Table 2 and

Supporting Information Figure S1b), and is predicted by IT analysis to

disrupt binding of PAX5 (Table 4), by cross-competition experiments

using known PAX5 binding sites from hCD19 (Kozmik, Wang, Dorfler,

Adams, & Busslinger, 1992) and hDAO (Tran et al., 2015) genes. These

experiments show that known PAX5 binding sites compete efficiently

for binding of nuclear proteins to the BRCA2 promoter region, indicat-

ing that PAX5 binding is reduced as a consequence of the nucleotide

sequence change (Figure. 6b). In contrast, supershift experiments for

POU2F2 (Oct-2) showed no evidence for BRCA1:c.-315del causing a

change in binding of POU2F2 in the cell line used (data not shown).

3.5 Clinical classification of BRCA1 and BRCA2 5′

noncoding sequence variants

Variants were classified according to the ENIGMA guidelines, which

are calibrated for classification of variants as high risk, using available

population frequency and/or clinical data (Supporting Information

Tables S5 and S6). In this context, the term pathogenicity refers to a

variant that confers a high risk of disease. Importantly, these classifica-

tion guidelines do not identify those variants that confer amoderate or

low risk of disease.

Of those variants identified in cases only, 26/70 (37%) of BRCA1

variants had been reported in dbSNP at study initiation (maximum

global frequency=0.006; Supporting Information Table S2), and 22/54

(41%) of BRCA2 variants observed in cases only were identified in

dbSNP (maximum global frequency = 0.006; Supporting Information

Table S3). Review of variant frequency in public reference groups iden-

tified 21 variants that were classifiable, as Not Pathogenic, based on

frequency in control groups (Supporting Information Table S5): six

BRCA1 and five BRCA2 variants were observed at >1% frequency

in population subgroups (stand-alone evidence against pathogenicity,

when detected in a nonfounder outbred population group); six BRCA1

and four BRCA2 variants occurred at frequency 0.001–0.01 (range

0.0014–0.0076) in at least five individuals in the reference set, which

combined with a low assumed prior is considered sufficient as evi-

dence against pathogenicity (Supporting Information Table S5). Fre-

quency data from controls screened for this study also supported the

frequency-based classifications for eight of these21variants (Support-

ing Information Table S5).

Segregation analysis for seven informative families aided classifi-

cation for six variants, whereas histopathology likelihood ratios (LRs)

derived for 24 tumors altered classification for 10 variants (Supporting

Information Table S6). Combining findings fromqualitative and quanti-

tativemethods,most variants (113/141; 80%) remainedClass3Uncer-

tain, largely due to a lack of data.

A total of 27/141 (19%) variants were classified as Not Pathogenic

or Likely Not Pathogenic. Of the 21 variants prioritized for functional

analysis, eight variants (38%) were classified as Not Pathogenic or

Likely Not Pathogenic based on frequency information and/or multi-

factorial analysis (Table 5), including two variants (BRCA1:c.-192T>C
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F IGURE 3 Variants mapping to the 5′ regions of BRCA1 and BRCA2 alter promoter activity inMCF7 andMDA-MB-468 breast cancer cells.
MCF7 (a and c) andMDA-MB-468 cells (b and d) were transfected with pGL3 vectors where luciferase expression is controlled by a portion of the
BRCA1 (B1) (a and b) or BRCA2 (B2) (c and d) promoter. Cells were transfected with plasmids containing the wild-type (WT) promoter sequence
(grey bars), positive control (B1-Ets or B2-Ets; striped bars) or the indicated variants (black bars). Luciferase expression was normalized to a
cotransfected pRL-TK plasmid. Data represent the average of three independent biological replicates± standard deviation (SD). The horizontal
dotted line representsWT promoter activity set at 1.0-fold. The vertical dotted lines demarcate individual experiments that includeWT, positive
control, and variant containing plasmids. (* P ˂ 0.05; ** P ˂ 0.01, *** P ˂ 0.005, **** P ˂ 0.0001)

and BRCA2:c.-296 C> T) that were shown to decrease promoter activ-

ity and in the case of BRCA2:c.-296 C>T also resulted in perturbed TF

binding. Taken together this analysis indicates that none of the variants

shown to affect function in this study are associated with a high risk of

disease. This analysis is silent, however, onwhether these variantsmay

confer amoderate or low risk of disease.

4 DISCUSSION

Next generation sequencing and gene panel testing enable rapid anal-

ysis of gene regions that have previously not been included in standard

screening procedures, including promoters, UTRs, introns, and extra-

genic regions. It is hypothesized that variants in these regions have

potential to modulate gene expression (Stranger et al., 2005; Stranger

et al., 2007) and impact on relative disease risk, possibly in collab-

oration with multiple other low-, moderate-, and high-risk variants

(Manolio et al., 2009). This extends and validates our previous study

(Santana dos Santos et al., 2017) by using a larger number patients

analyzed over nine geographical locations, identifying additional

BC-associated variants, and showing that a subset of these variants

modulate binding of specific TFs. Further, we have compared results

from our bioinformatics and functional analysis to variant classifica-

tions based on ENIGMA BRCA1/2 guidelines for high-risk variation in

these genes.

Through targeted sequencing of over 6,000 early onset/familial BC

patients, we identified 141 single nucleotide variants and small indels

mapping to the 5′ noncoding regions of BRCA1 and BRCA2. Of these,
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TABLE 4 Information theory analysis of prioritized BRCA1/2 variants

Variant name TFmotif (ENCODE) Consequences

BRCA1:c.-408T>A CEBPB CEBPB site weakened (did not meet stringent filtering thresholds)

BRCA1:c.-380G>A RXRA Weak RXRA and IRF3 sites weakened, HNF4G site weakened.

BRCA1:c.-378C>A RXRA RXR unchanged, HSF1 site lost and GR site created

BRCA1:c.-315del ATF1,2,3, CREB1a TCF7L2 site lost and POU2F2 created

BRCA1:c.-287C>T NFYA, NFYB NFYA andNFYB sites lost, weak PBX3 site created

BRCA1:c.-273G>A Altered TF strength did not fulfill stringent filtering thresholdsb

BRCA1:c.-264T>G BHLHE32 andMYC sites created.

BRCA1:c.-220C>A Altered TF strength did not fulfill stringent filtering thresholdsb

BRCA1:c.-192T>C ETS1 site created, weak RFX5 site strengthened.

BRCA2:c.-407G>A WeakMEF2A site strengthened, GATA2 site lost.

BRCA2:c.-395C>T TEAD4 site lost.

BRCA2:c.-296C>T PAX5 PAX5 site weakened.

BRCA2:c.-280del ELF1, GABPA, ELK1,4 GABPA site unchanged,MXI1 andTCF3 sites lost.

BRCA2:c.-268C>G Altered TF strength did not meet filtering thresholdsb

BRCA2:c.-218G>A Altered TF strength did not meet filtering thresholdsb

BRCA2:c.-200C>T MAZc KLF1 site abolished.

BRCA2:c.-197A>C MAZc SP4weakened, GR site weakened, TCF3 site created

BRCA2:c.-175C>T Altered TF strength did not fulfill stringent filtering thresholdsb

BRCA2:c.-133T>G Altered TF strength did not fulfill stringent filtering thresholdsb

BRCA2:c.-87T>G Altered TF strength did not fulfill stringent filtering thresholdsb

BRCA2:c.-82G>C Altered TF strength did not fulfill stringent filtering thresholdsb

aVariant overlaps this motif, but the deletion does not alter themotif sequence.
bChange in information did not fulfill stringent filtering criteria, where [A] site Ri < Rsequence–1 standard deviation of TFmodel, or [B] whereΔRi < 4 bits.
cNoMAZ bindingmodel available.

F IGURE 4 Variants in the 5′ regions of BRCA1 alter DNA:protein
complex formation. Electrophoretic mobility shift assay (EMSA)
reactions were performedwith 3′ biotinylated double-stranded DNA
probes from the BRCA1 5′ region and nuclear extracts (NE) from (a)
MCF7 or (b)MDA-MB-468 cells. DNA probes contained either
wild-type (WT) or variant (Var) sequences. Free unbound probe (FP)
and probe bound by nuclear proteins (BP) are indicated

four (BRCA1:c.-315del, BRCA1:c.-287C>T, BRCA1:c.-192T>C, and

BRCA2:c.-296C>T) caused a significant change in promoter activity.

The observed alterations in BRCA1 and BRCA2 promoter activity

are of a similar magnitude to that seen with other germline variants

associatedwith BC risk (Michailidou et al., 2017), including a variant in

the TERTpromoter, which creates a newbinding site for Ets factors and

results in a 1.2–1.5-fold increase in luciferase activity in a promoter

reporter assay (Horn et al., 2013), and variants in the promoters of

KLHDC7A and PIDD1 (Michailidou et al., 2017). Although this supports

the hypothesis that moderate change in promoter activity can be

associated with disease risk, further work is needed to confirm this.

One of the four variants significantly altered luciferase activity

in both tested cell lines, whereas the remaining three variants only

affected luciferase activity in MCF7 cells. This may reflect the differ-

ential availability of crucial TFs inMDA-MB-468 cells (Kao et al., 2009)

andhighlights the importance of undertaking that assays for functional

activity of variants inmore than one cell line. Three variants, BRCA1:c.-

380G>A, BRCA2:c.-296C>T, and BRCA2:c.-218G>A, were also ana-

lyzed in our earlier paper (Santana dos Santos et al., 2017). Although

the cell lines used in the two studies were different (MDA-MB-231 in

Santana dos Santos et al., 2017 and MCF7 and MDA-MB-468 here),

the trends are the same in five out of six analyses. The difference for

BRCA2:c.-296C>T, which causes a significant decrease in MDA-MB-

231 and MCF7 cells, but not MDA-MB-468 cells, may again be indica-

tive of differential gene expression in BC cell lines (Kao et al., 2009).

Overall, however, the consistency of results performed in two separate

laboratories underscores the robustness of the assay system.

Some variants were associated with a decrease in promoter activ-

ity, whereas others were associated with an increase. As TFs can
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F IGURE 5 Variant sequences in the BRCA1 5′ region alter specific DNA:protein complex formation. Competition electrophoretic mobility shift
assay (EMSAs) were performed using 3′ biotinylated double-stranded DNA probes containing sequences from the BRCA1 5′ region surrounding
the B1:c.-315del (a and b) and B1:c.-287C>T (c) variants. DNA probes containing the wild-type (WT) or variant (Var) sequence were incubated
with nuclear extracts fromMCF7 cells (MCF7NE) orMDA-MB 468 cells (468NE) in the presence (+) or absence (–) of unlabeledWT, Var, or
nonspecific (NS) competitor (Comp) DNA. Free unbound probe (FP) and specific DNA:protein complexes (arrowheads) are indicated. Supershift
experiments (d) were performedwith the BRCA1:c.-287C (WT) probe and antibodies to NFYA, Oct-2 (POU2F2) and PAX5. The supershifted NFYA
complex is indicated by asterisk (*)

F IGURE 6 Variants in the 5′ region of BRCA2 alter specific DNA:protein complex formation. Competition electrophoretic mobility shift assay
(EMSAs; a) were performed using 3′ biotinylated double-stranded (ds) DNA probes containing sequences from the BRCA2 5′ region surrounding
the BRCA2:c.-296C>T variant. DNA probes containing the wild-type (WT) or variant (Var) sequence were incubatedwith nuclear extracts from
MCF7 cells (MCF7NE) in the presence (+) or absence (–) of unlabeledWT, Var, or nonspecific (NS) competitor (Comp) DNA. Cross-competition
EMSAs (b) contained BRCA2WT sequences and increasing concentrations of ds competitor DNA containing unlabeledWT, Var, or PAX5 binding
sites from the hCD19 gene andD-amino acid oxidase gene (hDAO). Free unbound probe (FP) and specific DNA:protein complexes (arrowheads)
are indicated
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function as activators or repressors, a variant-associated change in

TF binding can result in either a decrease or an increase in promoter

(or other regulatory element) activity. Differences in the quanta and

direction of promoter activity have been reported previously (e.g.,

Fraile-Bethencourt et al., 2018; Santana dos Santos et al., 2017) and

have also been shown to differ between cell lines potentially reflecting

the availability of TFs or cofactors (e.g., Zn).

Three of the variants, BRCA1:c.-315del, BRCA1: c.-287C>T, and

BRCA2:c.-296C>T, altered protein binding. ENCODE ChIP-seq data

from BC cell lines indicate candidate proteins that are bound to the

genomic regions containing these variants (Figure 2 and Supporting

Information Figure S1). These include E2F1, CEBPB, GATA3, Max,

ELF1, GABP, and FOXA1 for BRCA1 and E2F1,MYC, ELF1, GABP,Max,

and PML for BRCA2. Interestingly, a number of these factors have pre-

viously been implicated in BC.

In addition, ENCODE ChIP-seq data from cell lines derived from

tissues other than breast indicate that the variants that affect pro-

tein binding are located within consensus motifs for specific TFs

associated with these regions (Tables 2 and 3; Supporting Informa-

tion Figure S1). BRCA1:c.-287C>T overlaps with the consensus bind-

ing motif for CCAAT Box binding factors, BRCA1:c.-315del is located

in a consensus motif for CREB/ATF proteins, although the deletion

does not modify this motif, and BRCA2:c.-296C>T is located within

the consensus motif for PAX5. IT analysis also predicts that all these

variants alter TF binding (Table 4 and Supporting Information Table

S4). We show that BRCA1:c.-287C>T disrupts the binding of NFYA

to the BRCA1 promoter region. Furthermore, we present evidence

that BRCA2:c.-296C>T disrupts the binding of PAX5. BRCA1:c.-315del

lies in the so-called positive regulator region that has been shown

to bind GABP𝛼, CREB, and AP-1 proteins (Atlas et al., 2000; Atlas,

Stramwasser, & Mueller, 2001; Graves, Zhou, MacDonald, Mueller,

& Roskelley, 2007; Suen & Goss, 1999; Thakur & Croce, 1999).

Although these proteins are generally considered activators of tran-

scription, repression of promoter activity by BRCA1:c.-315del sug-

gests the recruitment of an additional transcriptional repressor or

corepressor to this region. IT analysis predicts creation of a bind-

ing site for POU2F2, a known repressor; however, we found no evi-

dence to suggest that this variant increased POU2F2 binding in the

cell line used, although it is possible that changes may be observ-

able in other cell lines. Biochemical studies, including mass spectrom-

etry, will be required to validate and discover other alterations in TF

binding.

One variant, BRCA1:c.-287C>T, increased promoter activity and

decreased protein:DNA interactions. This increase in promoter activ-

ity was unanticipated because this variant is within a consensus motif

for the CCAAT box binding proteins, NFYA and NFYB, and muta-

tion of this CCAAT box has previously been shown to reduce BRCA1

promoter activity in MCF7 cells (Bindra et al., 2005; Xu, Cham-

bers, & Solomon, 1997). This variant also decreases promoter activ-

ity in MDA-MB-231 cells (Santana dos Santos et al., 2017). Here,

we show that the BRCA1:c.-287C>T variant reduces NFYA binding.

Importantly, NFY proteins can function as transcriptional activators or

repressors depending on recruitment of corepressors or coactivators

(Peng & Jahroudi, 2002; Peng et al., 2007) and recruitment of TFs to

neighboring sequences (Zhu et al., 2012) indicating possible mecha-

nisms for divergent activities of NFY proteins at this site.

BRCA1:c.-192T>C, which lies in the 5′UTR, decreased reporter

activity but did not bind any proteins from MCF7 nuclear extracts in

EMSA analysis. Possibly, EMSA binding conditions are not optimal for

binding of factors to this sequence or alternatively, this reduction in

promoter activity could be by posttranscriptional mechanisms as seen

for BRCA2:c.-26G>A (Gochhait et al., 2007).

Using existing prediction models developed for high risk variants,

population frequency and clinical information classified 27 variants

as "Not Pathogenic" or "likely Not Pathogenic." This included two

BRCA1 and six BRCA2 variants with functional assay data available,

six with no statistically significant effect on promoter activity, and

two that decreased promoter activity in vitro. These two variants,

BRCA1:c.-192T>C and BRCA2:c.-296C>T, were observed in popu-

lation subgroup controls; notably BRCA1:c.-192T>C was observed

at a frequency of >1%, which is considered stand-alone evidence

against pathogenicity (defined as high risk of cancer) for BRCA1/2

variation. This suggests that promoter region variants, irrespective of

bioinformatic prediction or functional assay results, are unlikely to be

associated with a high risk of cancer. This is consistent with current

evidence fromENIGMA studies (de laHoya et al., 2016), which suggest

that an allele resulting in only ∼20–30% expression of BRCA1 tran-

script/s encoding functional transcripts is not associated with high risk

of BC. The low impact of these variants on risk is likely to reflect the

complex interplay of TFs and DNA elements, and possible redundancy

in the system. For example, a variant in one TF binding site within a

cluster may be buffered by other binding sites and thus insufficient on

its own to reduce gene expressionmarkedly (Lu & Rogan, 2018).

Given that moderate- and low-risk variants often occur in >1% of

the population, and that the remaining 13 variants had insufficient evi-

dence available to assess clinical significance, we cannot exclude the

possibility that BRCA1/2 promoter region variants, in particular those

with proven functional effect, may be associated with a moderate or

low risk of cancer. This indicates an urgent need to further develop

prediction models to accommodate criteria for moderate- or low-

risk variants by extending the BRCA1/2-specific criteria developed by

ENIGMA (https://www.enigmaconsortium.org/), or even the generic

variant classification criteria developed by the American College of

Medical Genetics forMendelian disorders (Richards et al., 2015).

This study has evaluated the significance of single nucleotide

variants and small indels mapping to the 5′ noncoding region of BRCA1

and BRCA2 using bioinformatic, biological, and biochemical analyses in

combination with consideration of clinical data that inform qualitative

and quantitative variant classification.Wepresent data to suggest that

a subset of these variants have functional effects on gene regulation.

We also present evidence that variants mapping to and affecting the

function of BRCA promoters are not likely to be associated with a high

risk of cancer. We propose that studies of differing design, such as

very large-scale case-control sequencing studies able to detect rare

variation, will be required to address if a low tomoderate risk of cancer

may be associated with BRCA1/2 regulatory region variation that has

not been captured to date by genome-wide association genotyping

platforms. We believe that the bioinformatic and functional analysis

https://www.enigmaconsortium.org/
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presented will be important to define the design and interpretation

of such future sequencing studies. We also believe that this study

highlights the challenges associated with classifying variants with

respect to low ormoderate disease risk, and the need to be cautious in

the clinical use of information on individual variants that is likely to be

one of many factors contributing to disease risk.
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