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ABSTRACT

Data from ChIP-seq experiments can derive the
genome-wide binding specificities of transcription
factors (TFs) and other regulatory proteins. We an-
alyzed 765 ENCODE ChIP-seq peak datasets of 207
human TFs with a novel motif discovery pipeline
based on recursive, thresholded entropy minimiza-
tion. This approach, while obviating the need to
compensate for skewed nucleotide composition, dis-
tinguishes true binding motifs from noise, quanti-
fies the strengths of individual binding sites based
on computed affinity and detects adjacent cofactor
binding sites that coordinate with the targets of pri-
mary, immunoprecipitated TFs. We obtained contigu-
ous and bipartite information theory-based position
weight matrices (iPWMs) for 93 sequence-specific
TFs, discovered 23 cofactor motifs for 127 TFs and
revealed six high-confidence novel motifs. The relia-
bility and accuracy of these iPWMs were determined
via four independent validation methods, including
the detection of experimentally proven binding sites,
explanation of effects of characterized SNPs, com-
parison with previously published motifs and sta-
tistical analyses. We also predict previously unre-
ported TF coregulatory interactions (e.g. TF com-
plexes). These iPWMs constitute a powerful tool for
predicting the effects of sequence variants in known
binding sites, performing mutation analysis on regu-
latory SNPs and predicting previously unrecognized
binding sites and target genes.

INTRODUCTION

Transcription factors (TFs) interact with regulatory ele-
ments in genes to mediate positive or negative regulation
of tissue- and stage-specific expression (1,2). TFs either di-
rectly bind to DNA by recognizing specific sequence motifs,
or indirectly interact as partners (or cofactors) of sequence-

specific TFs (3). Interactions between these two types of
TFs, as well as between sequence-specific TFs, abound
across the whole genome (3,4). For instance, NF-Y ex-
tensively coassociates with FOS over all chromatin states
and CTCF extensively colocalizes with cohesins consist-
ing of SMC1/SMC3 heterodimers and two non-SMC sub-
units RAD21 and SCC3 (5,6). The genome-wide distribu-
tions of both types of bound TFs have been analyzed by
sequence analysis of immunoprecipitated chromatin (ChIP-
seq) (7). ChIP-seq can identify the repertoire of binding site
sequences in a genome, and often pull down binding sites of
coregulatory cofactors.

Sequence-specific TFs either recognize contiguous se-
quence motifs, or form homodimeric or heterodimeric
structures that contact half sites separated by gaps that to-
gether comprise bipartite binding sites (8). Although gen-
erally the binding sequences of TFs are well conserved, sig-
nificant variability at most positions of their binding mo-
tifs characterizes most TFs. Information theory-based posi-
tion weight matrices (iPWMs) can quantitatively and accu-
rately describe these base preferences. A contiguous iPWM
is derived from a set of aligned binding sites using Shannon
information theory and a uniform background nucleotide
composition (9,10). This approach may be more appropri-
ate for defining binding sites than Relative Entropy because
the contacts between the TF and the nucleotides do not de-
pend on the background genomic composition (10,11). A
bipartite iPWM consists of two contiguous, adjacent iP-
WMs, each corresponding to a half site, separated by a
range of sequence gaps. The individual information content
(Ri) of a TF-bound sequence, which represents the affinity
of the TF–DNA interaction, is the dot product between the
binary matrix of the sequence and an iPWM of the TF (10).
The Rsequence value of an iPWM is the mean of the Ri values
of all the binding site sequences used to compute the iPWM,
and represents the average binding affinity (12). Our labo-
ratory previously developed the Bipad software to generate
bipartite (and contiguous) iPWMs from ChIP-seq data (8).

TF binding motifs have been derived from both experi-
mental evidence and computational approaches. Weirauch
et al. (13) measured TF binding by octanucleotide microar-
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rays to infer sequence specificity from overlapping bound
sequences for >1000 TFs encompassing 54 different DNA
binding domain (DBD) classes. Jolma et al. (14) obtained
830 binding profiles representing 411 human and mouse
TFs using high-throughput SELEX and ChIP sequencing.
The oligonucleotide-based approach does not account for
variable-length spacers in bipartite binding sites, and it may
reconstruct potentially incorrect motifs that cannot be dis-
criminated from correct binding site sequences. In addition,
the set of octamers used in the DNA microarrays may not
cover all possible binding site sequences (>8 nucleotides
[nt]) recovered in the genome from ChIP-seq and there is no
way to discover potential binding sites from TF cofactors.
Wang et al. (3) carried out de novo motif discovery for 119
human TFs from 457 ChIP-seq datasets using the MEME-
ChIP software suite, and Kheradpour et al. (15) provided
a systematic motif analysis for 427 ChIP-seq datasets of
123 human TFs using five motif discovery tools. However,
these studies did not generate bipartite motifs with half sites
separated by gaps varying in length; more importantly, the
derived motifs were only based upon strongest ChIP-seq
signal peaks (top 500 or 250 peaks), effectively eliminating
thousands of intermediate or weak binding events and bi-
asing the resulting iPWMs toward high-affinity, consensus-
like binding sites. This is necessary, as the sequences con-
tained in the weakest ChIP-seq peaks may contribute low-
complexity, likely non-functional sequences (i.e. noise) that
can obfuscate the detection of true binding motifs. Extreme
peak selection bias in the population of sites distorts the
binding strengths estimated for individual sites (16).

We developed a motif discovery pipeline, Maskminent,
by integrating recursive masking and thresholding the max-
imum number of ChIP-seq peaks into an entropy mini-
mization framework. Bipad was modified to incorporate
these features, and TF binding motifs were derived and vali-
dated for 765 ENCODE ChIP-seq datasets (1275 replicates)
consisting of 207 human TFs. 93 primary and 23 cofac-
tor binding motifs were successfully recovered and refined
for 127 TFs. Reanalysis of the same data using the mask-
ing and thresholding techniques revealed many known and
previously unreported TF cofactors; however, frequently
our approach revealed cofactor motifs directly. These pri-
mary motifs were validated by comparing predicted with
experimentally-detected true binding sites, explaining ef-
fects of characterized SNPs on binding site strengths, and
through comparisons to an independent motif database.

MATERIALS AND METHODS

ENCODE ChIP-seq datasets

The ENCODE Consortium conducted ChIP-seq assays for
human TFs and generated initial peak datasets for each
replicate of each assay using a uniform peak calling pipeline
(7,17). For some assays, these analyses produced optimal
and conservative IDR-thresholded peaks after applying the
IDR (irreproducible discovery rate) framework to the ini-
tial datasets to improve consistency of motifs obtained
from multiple biological replicates. In addition, Factorbook
(3,18) also reports motifs from refined datasets (limited to
the top 500 peaks) generated by the SPP peak calling soft-
ware (19).

We started with the IDR-thresholded peak datasets, be-
cause we found that these data are more likely to pro-
duce primary or cofactor motifs than the initial (i.e. un-
processed) datasets; they contain greater numbers of ChIP-
seq peaks (and thus more binding sites) than the truncated
SPP datasets. The initial, unfiltered datasets were examined
if neither IDR-thresholded nor SPP datasets were available.

The Maskminent motif discovery pipeline

Initially, iPWMs from ChIP-seq reads were derived by en-
tropy minimization with Bipad (Supplementary Methods).
However, we noted that these iPWMs sometimes exhibited
cofactor or noise motifs, rather than the expected primary
motifs. In order to improve detection of primary motifs, the
Maskminent software, which implements a generalization
of the objective function used in Bipad, enables new motif
discovery by recursively masking sequences detected by pre-
vious analyses of a ChIP-seq dataset while defining thresh-
olds for inclusion of the maximum number of top peaks to
eliminate peaks with lower signal intensities whose inclu-
sion can result in emergence of noise over primary or cofac-
tor motifs (Supplementary Methods). Multiple ChIP-seq
datasets from distinct cell lines for the same TF, if avail-
able, were examined for enriched sequence motifs to as-
sess whether this approach was reproducible, and discover
tissue-specific sequence preferences between these sources.

This masking technique, which contrasts with the like-
lihood approach used by MEME (20), provides a means
of discovering additional conserved motifs adjacent to pri-
mary TF binding sites within the same datasets. The se-
quences detected by motifs found in previous iterations are
masked and the next lowest entropy motif is derived. The
coordinates of all the predicted binding sites in a dataset
scanned with prior iPWMs are recorded and skipped in the
subsequent reanalysis. The specified parameters include the
length of the motif, number of Monte Carlo cycles used in
entropy minimization, a motif masking file for recursion,
and for bipartite binding sites, the lengths of the left and
right motifs and the gap length range between the half sites
(Supplemental Methods). Once a motif is generated, an-
other program, Scan, is used to detect binding sites in a
DNA sequence and determine their respective information
contents, or binding strengths.

To eliminate noisy patterns that suppress the expected
TF binding motifs due to ChIP-seq peaks with low signal
strengths (i.e. read counts), the dataset is truncated based on
signal strengths as follows (Figure 1). First, all the peaks are
ranked in the descending order of strengths, and the top 200
peaks are selected. If the iPWM derived from the top 200
peaks exhibits the primary/cofactor motif, then the mini-
mum threshold peak strength is contained within the range
from the strength of the 200th peak (i.e. the initial value of
G) to the peak with the weakest signal (i.e. the initial value
of S). A half-interval search iterated over sets of progres-
sively weaker peaks narrows this range until the number of
peaks contained in the range is ≤500. The value of G is the
threshold peak signal strength above which the top peaks
can still produce the primary/cofactor motif. The minimum
threshold obtained for G (i.e. the final value of G) defines
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Figure 1. One iteration of the half-interval search used to refine the threshold peak strength. All peaks in the dataset are sorted in the descending order
of signal strengths. S is the smaller bound of the current range containing the minimum threshold that can generate the primary/cofactor motif, and G is
the greater bound (i.e. the current threshold). G and S are respectively initialized to the strength of the 200th peak and the strength of the last peak. M is
the strength of the peak at the mean (rounding to the nearest multiple of 500) of the number of top peaks above G and the number of top peaks above S.
i PWMG , i PWMS, i PWMM are respectively the iPWMs derived from the top peaks above G, S, M. d(i PWMG , i PWMM) is the Euclidean distance be-
tween i PWMG and i PWMM, and d(i PWMS, i PWMM) is the Euclidean distance between i PWMS and i PWMM. If d(i PWMG , i PWMM) is greater than
d(i PWMS, i PWMM), i PWMM exhibits the noise motif and the minimum threshold is contained in the subrange from G to M; if d(i PWMG , i PWMM)
is smaller than d(i PWMS, i PWMM), i PWMM exhibits the primary/cofactor motif and the minimum threshold is contained in the subrange from M to
S. When the number of peaks contained in the range does not exceed 500, this half-interval search is stopped. The approximately minimum threshold that
is returned is G of the final range.

the approximate peak set containing the maximum number
of top peaks that can produce the primary/cofactor motif.

Binding site motif validation

The methods used to evaluate the accuracy of our iPWMs
include:

i) To detect experimentally proven binding sites in known
target genes, derived iPWMs were used to evaluate the
Ri value of each site;

ii) To predict changes in binding site strength, character-
ized variants were evaluated with the corresponding iP-
WMs. The predicted changes were compared with ex-
perimentally supported effects on TF binding or gene
expression;

iii) The iPWMs were compared with the corresponding an-
notated motifs in the CIS-BP database (13) based on
their normalized Euclidean distances;

iv) To distinguish true binding motifs from noise mo-
tifs, we delineated the relationship between Ri values
of binding sites discovered by the iPWM and their
corresponding binding energy (i.e. higher Ri values
have lower binding energies) (Supplementary Meth-
ods). Primary/cofactor motifs are expected to demon-
strate this relationship, whereas noise motifs are not;
that is, for primary/cofactor motifs, the linear regres-
sion fit between Ri values and binding energy are ex-
pected to have slopes well below 0 which is the expected
slope for noise motifs. After applying F-tests to evalu-
ate this relationship, F-values for the two categories of
motifs were compared using a Mann–Whitney U test.

RESULTS

The derived iPWMs displayed primary motifs for 93 TFs
(Supplementary Table S1), as well as 23 cofactor motifs for

127 primary TFs (Supplementary Table S2). We also de-
scribe 6 high-confidence novel motifs that have not been
previously annotated in these ChIP-seq data (Supplemen-
tary Table S3).

The initial iPWMs directly exhibited primary motifs for
76 TFs and 18 cofactor motifs for 107 primary TFs. Thresh-
olding the datasets revealed 31 primary motifs and 14 cofac-
tors for 38 primary TFs. We used the masking technique to
discover an additional 4 primary motifs; 7 cofactor motifs
were also found in 21 datasets (Supplementary Tables S1
and S2).

For each TF ChIP-seq dataset with a derived primary
motif (n = 367), we determined the false positive detection
rate from the null Ri distribution, which is approximately
Gaussian (12). The iPWM was used to scan for binding sites
in a random 10 000 nucleotide sequence that conserved the
mono- and dinucleotide composition as the dataset (Sup-
plementary Table S1). The means of all null distributions
range from −97.5 to −12.3 bits with standard deviations
from 6.9 to 22.5 bits. The probabilities of observing a po-
tentially functional binding site, i.e. with Ri > 0, in these
sequences range from 1.2E-7 to 0.06.

Similarly, the independence of contributions of each po-
sition in a binding site to the overall information content
was analyzed for one iPWM of each primary motif. The
total mutual information, which measures the interdepen-
dence between individual positions in the same binding site,
was determined by summing the pairwise mutual informa-
tion at each position (Supplementary Table S1). Then, the
percentage of the total mutual information relative to the
average information, Rsequence, was determined. For 83 TFs
(∼89.2%), <10% of the information present in the iPWM
is dependent, and for 62 TFs (∼66.7%), <5% is dependent.
Neglecting the interactions between positions introduces a
minimal error into the calculation of Ri values of binding
sites, and would be expected to have little impact on assess-
ment of the mutations in these sequences.
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Primary binding motifs

Contiguous iPWMs. Correct iPWMs were successfully de-
rived for 65 TFs with contiguous binding motifs, which are
concordant with published descriptions of these motifs (3).
All of these motifs can be characterized as degenerate and
do not correspond to published consensus sequences. Con-
sensus sequences miss TF binding sites of weak or inter-
mediate strength (16). We determined the frequencies of
such sequences appearing on a genome scale for 10 TFs
by counting the peaks containing these sequences in their
respective datasets (Figure 2A). Surprisingly, only 0.015–
7.3% of all peaks contain binding sites with these sequences,
demonstrating that these sites are extremely rare in ChIP-
seq datasets. Thus, intermediate and low-affinity TF-DNA
interactions are the most prevalent in vivo and are able to
regulate gene expression (21).

Bipartite iPWMs. For 19 TFs, bipartite iPWMs were suc-
cessfully derived and were in agreement with previously re-
ported motifs. The following examples illustrate key insights
that can be taken from bipartite modeling:

i) El Marzouk et al. (22) demonstrated that ESR1 is able
to recognize binding sites with half sites separated by
nucleotide spacer lengths from 0 to 4 nt, in which sites
containing a 3 nt spacer are most common and have the
highest binding affinities. We allowed the spacer length
to vary from 0 to 5 nt in bipartite iPWMs derived from
the T47D cell line data. The resultant iPWMs show
the documented predominant sequences and are palin-
dromic. The bipartite iPWM exceeds the average infor-
mation content of the corresponding contiguous iPWM
prepared from the same dataset, and the dominant gap
between half sites is 3 nt (Figure 2B). Nevertheless, 333
binding sites (∼9%) in this iPWM exhibit a 5 nt spacer,
implying that ESR1 may be capable of binding to sites
that were not previously detected. The symmetry be-
tween the half sites exhibited by the bipartite iPWMs
suggests that dimeric ESR1 may bind a narrow range
of sequences with similar half site affinities.

ii) The palindromic predominant sequence of the
AP2 family is 5′-GCCN3GGC-3′, and other bind-
ing sequences confirmed in an in vitro binding-
site selection assay include 5′-GCCN4GGC-3′
and 5′-GCCN3/4GGG-3′. Another binding site 5′-
CCCCAGGC-3′ was also found in the SV40 enhancer
(23). The spacer lengths in the bipartite iPWMs for
AP2A and AP2C range from 2 to 4 nt, which is
representative of the genome-wide pool of true binding
sites (Figure 2B). We also noted that the two outermost
positions are the most variable, and that adenine
(instead of the consensus guanine) can also appear at
the first position of the right half site. These bipartite
iPWMs exhibit similar conservation levels across all the
individual positions, suggesting that these binding sites
of the two AP2 members may exhibit similar degrees of
binding affinity, though iPWMs can recognize different
sequences.

iii) The predominant spacer length separating half sites rec-
ognized by STAT1 is 3 nt; however, previous reports

describe sites with a 2 nt gap, but not those separated
by 4 nt (24). However, the STAT1 bipartite iPWM is
based on 1709 binding sites (∼18%) with a 4 nt spacer,
with most half sites separated by 2 or 3 nt (Figure 2B).
The left- and rightmost nucleotides are nearly invari-
ant, whereas the inner 2 nt contacts in each half site are
variable.

iv) NFE2 and BACH1 heterodimerize with the MAF
family (MAFF, MAFG and MAFK), and recognize
two types of bipartite palindromic motifs, defined by
the predominant binding sites TGCTGA(C)TCAGCA
and TGCTGA(CG)TCAGCA (25). The previously re-
ported binding motifs (3) are contiguous, and do not
account for the dimeric interaction that gives rise to this
bipartite binding pattern. The bipartite iPWMs indicate
that the inner six positions surrounding the dominant 1
nt spacer exhibit higher information contents than the
outer six positions (Figure 2B).

Comparing iPWMs for the same TF in distinct cell lines.
Cell-type-specific differences between iPWMs of the same
TF were evident for certain contiguous and bipartite mo-
tifs. For instance, among the three contiguous iPWMs of
ESR1 derived from the ECC1 steroid-responsive endome-
trial cell line, conservation levels in the respective half sites
are asymmetric, whereas the average information of these
half sites are much more symmetric in iPWMs derived from
T47D, a breast tumor cell line (Figure 3A). For the TFs
MAFF and MAFK, the discrepancy between the bipartite
iPWMs from K562 and HepG2 cells is evident: the outer
six positions show a greater degree of conservation than the
internal six positions in HepG2, but in K562 the opposite
trend is illustrated (Figure 3A). The MAFK iPWM derived
from ChIP-seq data of IMR90 cells resembles the HepG2
iPWMs, whereas the iPWMs from HeLa-S3 and H1-hESC
datasets resemble the K562 iPWMs. The compositions of
binding sites (i.e. different target genes for the same TF in
different tissues) account for these differences because TFs
can display distinct cell-type-specific DNA sequence pref-
erences (26). Consistent iPWMs between replicate datasets
makes it unlikely that the skewed base conservation between
ChIP-seq datasets for the same TF in different cell lines
arises from sampling differences; however, this possibility
cannot be excluded.

Cofactor binding motifs

Discovery of the binding motif of a cofactor in the same
ChIP-seq dataset for a primary TF implies that the two
TFs transcriptionally co-regulate this set of common tar-
get genes. This could be accomplished either by formation
of a physical complex on the promoter, or by synergistic
or antagonistic cis-regulatory effects. De novo motif discov-
ery from ChIP-seq datasets provides an effective approach
for confirming or predicting statistically significant TF in-
teractions on a genome-wide scale; by contrast, the abun-
dant, existing literature overwhelmingly documents gene-
by-gene evidence about such interactions which constrains
arguments supporting their generalizability. Figure 4 illus-
trates TF-cofactor interactions revealed by the Maskminent
pipeline.
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Figure 2. Sequence logos of contiguous (A) and bipartite (B) iPWMs. The TF name, and the cell line from which the iPWM was derived, and the number
of binding sites that the iPWM is based upon are displayed. In (B), each of the first four rows includes a contiguous (left) iPWM and a bipartite (right)
iPWM of one TF from the same dataset. The last row includes the bipartite iPWMs of NFE2 and BACH1. The bipartite search patterns, which are denoted
by l<a,b>r (l and r are the lengths of the left and right half sites respectively, a and b are the minimum and maximum spacer lengths respectively), are
6<0,5>6, 3<2,4>3, 3<2,4>3, 3<2,4>3, 6<1,2>6 and 6<1,2>6 from top to bottom, respectively.

Confirmation of known cofactors. The derived iPWMs
confirmed genome-wide interactions between 22 cofactors
and 102 primary TFs (Table 1), which were supported by the
previous studies (3,5,6,15,27–93). For example, the interac-
tion between SP1 and multiple members of the ETS and
AP1 families has been well characterized (94–99). ELK1
and SRF can recruit each other to form a ternary com-
plex on CArG-ETS elements (100). TEAD-AP1 coopera-
tion with steroid receptor coactivators (SRC) drives down-
stream gene transcription to regulate cancer cell migration
and invasion (101), and STAT1, STAT2 and IRF9 form
a heterotrimer that regulates transcription of genes con-
taining IFN-stimulated response elements (102). Consistent
with previous reports (15), the existence of a YY1–THAP1
complex is predicted from co-segregation of their binding
motifs in the K562 dataset of THAP1. Similarly, we predict
that the SOX2–OCT4 complex colocalizes with BCL11A,
similar to Wang et al. (3). A DNA-binding complex consist-
ing of GATA1, TAL1, E2A, LMO2 and LDB1 is present
in the erythroid cell lineage (103). Based on the proxim-

ity and coprecipitation of these binding sequences, we and
others (3,104) find that this complex, in which GATA1 and
TAL1 contact DNA, coordinately binds with TEAD4 and
other non-DNA binding proteins (P300, PML, RCOR1 and
TBL1XR1). The GATA1–TAL1 and SOX2–OCT4 com-
plexes emerged from the datasets of TAL1 and OCT4 as
primary motifs, respectively, which implies the formation of
the two complexes may be necessary for binding of TAL1
and OCT4.

Discovery of novel cofactors. Maskminent revealed a num-
ber of previously unrecognized cofactor motifs (n = 10) for
46 primary TFs (Table 1), which supports novel TF cobind-
ing and interactions. This includes possible associations be-
tween the IRF and RUNX families, and their further co-
operation with BCL11A, MEF2A, MEF2C, CEBPB, EED
and P300 in GM12878 cells (Table 1 and Figure 4). Simi-
larly, the TEAD–AP1 complex is predicted to recruit MYC,
STAT3 and GATA2 in multiple cell lines. The finding that
NR2F2 and STAT5A motifs are in close proximity to se-
quences recognized by the GATA1–TAL1 complex suggests
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Figure 3. Comparison between iPWMs from different cell lines and novel motifs. (A) Each row includes sequence logos of two iPWMs of the same TF
from two different cell lines. The bipartite iPWMs for MAFF and MAFK used the search pattern 6<1,2>6. (B) The high-confidence novel motifs (‘NM1’
– ‘NM6’). The logos of the NM1, NM2 and NM3 motifs come from the datasets of BAF155, NANOG and ESRRA, respectively.

Table 1. Cofactors revealed by iPWMs and their corresponding primary TFs

Cofactors Primary TFs*

Sequence-specific Non-sequence-specific

AP1 GATA2, MYC, SRF, STAT3, TEAD4 BAF155, BAF170, BCL3, BRG1, P300
CEBPB P300
CTCF ZNF143 RAD21, SMC3
ETS family MAX, SRF1, TR4 DIDO12

GATA family RUNX12 BRG12, SIRT62

GATA1–TAL1 NR2F22, STAT5A2, TAL12, TEAD42 P3002, PML2, RCOR12, TBL1XR12

FOXA family ARID3A3, GATA3, GATA43, NFIC3, TCF123, TEAD43 HDAC23, MBD43, P300
HNF4 family SP13

HSF family PGC1A3

IRF family ATF12, BCL11A1, CEBPB1, CREM1, ETV61, FOXM11, FOXP2,
IKZF11, MEF2A1, MEF2C1, NFE21, NFKB1, OCT21, RUNX31,
STAT12, STAT22, STAT31, STAT5A1, TCF71, ZBED11

EED1, EZH21, MTA31, P3001, TBL1XR11

NFKB KDM5A4

NFY FOS, IRF3
NRSF SP23, TEAD4 SIN3A4

RUNX family BCL11A1, CEBPB1, IRF41, MEF2A1, MEF2C1 EED1, P3001

SP family ATF24, ATF3, CEBPD3, CREB1, CREM1, DEAF12, E2F1, E2F4,
E2F6, ELF1, ELK1, ETS1, FOS, FOSL14, FOXP2, GABPA, GATA43,
IRF12, IRF3, JUND, KLF132, MAX, MITF2, MXI1, MYC, NFE21,
NFKB1, NFYA, NRF1, NRSF3, OCT21, PAX51, PBX3, RFX5,
SMAD5, SREBF13, SREBF23, SRF, STAT11, SUZ12, TBP, TCF4,
TCF72, THAP12, TR4, UBTF2, YY1, ZBED12, ZBTB33, ZBTB7A2,
ZHX23

BCLAF1, BRCA1, CBX13, CCNT22, CHD1, CHD2, DIDO12, EZH2,
GTF2B2, HDAC12, HMGN32, INI1, KAT2A, KDM5B2, P3004,
PHF82, PML, RBBP5, RCOR13, RPB1, SAP302, SIN3A, TAF1, TAF7

SOX2 NANOG4

SOX2-OCT4 BCL11A4, OCT44

TEAD family GATA2, MYC, STAT3
TFIIIC HSF13, TBP, TCF12 BDP1, BRF1, RPC155, RPC32
YY family CREB32, IRF92, PTTG12, TEAD22, THAP12 DDX202, ID32, ILK2, KDM5A4, PTRF2, PYGO22, TAF72

USF ATF3, NFE21

ZBTB33 ETS11 BRCA1
ZNF143 ETS1, DEAF12 SIX5

*The underlined or normal font denotes known or newly discovered interactions between cofactors and primary TFs, respectively.
1,2,3,4The cofactor was revealed in the GM12878-related, K562, HepG2 or H1-HESC cell lines, respectively. Otherwise the cofactor appeared in other or multiple cell lines.

these factors may coordinately regulate target genes. Many
cofactors were also discovered among datasets of non-
sequence-specific primary TFs, which is consistent with the
possibility that these primary TFs are recruited to gene pro-
moters through their association with DNA-binding cofac-
tors (Table 1).

Cofactor binding sites. To validate the predicted cobind-
ing between cofactors and primary TFs, we determined the
intersite distance distributions by scanning the individual
ChIP-seq intervals with the derived iPWMs for each (Figure
5 and Supplementary Table S4). A minimum information
threshold was applied to the Ri values of predicted binding
sites in order to remove the relatively large number of weak
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Figure 4. Network graph of TF-cofactor interactions revealed by the Maskminent pipeline. A yellow ellipse denotes a cofactor and a white ellipse denotes
a primary TF. A hexagon denotes a TF family with dash lines connecting its members. For a TF family only members for which ENCODE provides peak
datasets are shown. A red rectangle denotes a known or predicted TF complex with black or blue dotted lines indicating its components, respectively. An
undirected line denotes the interaction between a primary TF and a cofactor which may be a complex or a TF family. A directed line links two cofactors,
denoting that in a dataset of the starting TF, the ending TF was discovered as a cofactor. Black lines denote known interactions and blue lines denote the
newly discovered interactions.

Figure 5. Distributions of intersite distances between primary TFs and discovered cofactors versus negative controls. The minimum threshold on informa-
tion contents of predicted binding sites is Rsequence. Each graph illustrates a much higher frequency of short (<20 nt) intersite distances between primary
TFs and cofactors (blue) compared to the negative control (SOX2-OCT4; red).
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binding sites that are likely to be low-complexity sequences
(e.g. Rsequence [or 0.5 * Rsequence, if too many cofactor binding
sites were eliminated at the higher threshold]). The SOX2–
OCT4 complex was used as a primary negative control, as
it is primarily expressed in the H1-hESC cell line and is un-
likely to be a cofactor for primary TFs in other cell lines.
A large percentage of peaks have short intersite distances
between the primary TF and the corresponding cofactor
binding sites (e.g. <20 nt), whereas there is no such a trend
for the negative control sequences and the primary TF. The
same difference is observed between the distribution for the
documented TEAD4–AP1 binding site pair and for the neg-
ative control set. Consistent with previous reports (4), the
binding sites of cofactors and primary TFs in peak datasets
were physically overlapped between the IRF and RUNX
motifs, between the TEAD4 and AP1 motifs, and between
USF and ATF3 (AP1) recognition motifs.

Tissue-specific preferences of predicted cofactors relative to
primary TFs. Several cofactors were recurrently associ-
ated with different primary TF partners, notably in specific
cell lines. One possible explanation is that these cofactors
are coordinately regulated with different primary TFs pref-
erentially in specific cell types. For example, the datasets of
25 primary TFs in which the IRF family was discovered
as a cofactor were all derived from lymphoblastoid (e.g.
GM12878) cell lines, with four exceptions (Table 1). Reg-
ulation by the IRF family is central to B-lymphocyte ex-
pression programs (105). All the datasets of 11 primary TFs
from which the GATA and GATA1–TAL1 motifs emerged
as cofactors were derived from K562 erythrocytic leukemia
cells (Table 1), which is consistent with the activation role
that the GATA family exhibits in hematopoietic lineage
gene expression (106,107). Similarly, FOXA family mem-
bers bind to the same sequences as seven primary TFs in
the HepG2 cell line derived from hepatocellular carcinoma
cells (Table 1), which is consistent with the fact that FOXA
proteins regulate the initiation of liver development (108).
Datasets of GATA3 and P300 from the T47D breast can-
cer cell line are also linked to FOXA. Another TF family
known to be a key factor regulating hepatocyte differen-
tiation and liver-specific functions is HNF4 (109), which
was discovered as a cofactor of SP1 in a HepG2 dataset.
SOX2 and the SOX2–OCT4 complex were unveiled as co-
factors only in datasets of three primary TFs from the H1-
hESC cell line representing embryonic stem cells (Table 1),
which is supported by the requirement for SOX2, OCT4 and
NANOG to maintain pluripotency (110). Interestingly, all
the datasets (n = 12) in which YY was revealed as a co-
factor were from K562 cells, with one exception (Table 1).
Unlike the GATA TFs, the YY family is ubiquitously dis-
tributed and not known to play an especially central role in
erythroid lineage development, although YY1 is known to
act as a developmental repressor of the �-globin gene along
with GATA1 (111).

Not surprisingly, the SP family was found to be capable
of interacting with the maximum number of TFs, which is
consonant with its role in constitutive transcriptional acti-
vation. Similarly, the ubiquitously expressed AP1 interacts
with 10 TFs in multiple cell lines, and these interactions do
not show any preference in cell type.

A number of primary TFs exhibit an extensive capabil-
ity of interacting with multiple cofactors in different tissues.
The unique distribution of these cofactors across multiple
cell lines suggests the tissue-specific functions of the pri-
mary TFs. For instance, TEAD4 was found to coimmuno-
precipitate with GATA1–TAL1 in K562 cells, NRSF in
A549 cells, FOXA in HepG2 cells, and AP1 in multiple cell
types. Cofactors of P300 include IRF–RUNX in GM12878
cells, SP in H1-hESC cells, AP1 and CEBPB in HeLa-S3
cells, FOXA in HepG2 and T47D cells and GATA1–TAL1
in K562 cells. Cosegregation analysis revealed interactions
between BCL11A and IRF–RUNX in GM12878 cells, and
SOX2-OCT4 in H1-hESC cells. STAT5A and TBL1XR1
cosegregated with members of the IRF family in GM12878
cells and with GATA1–TAL1 in K562 cells.

Discordance between iPWMs derived from the same ChIP-
seq assay. We noticed some discrepancies between IDR-
thresholded datasets and SPP datasets from the same ChIP-
seq assay. For example, for the primary TF BRG1, iP-
WMs exclusively from SPP-derived datasets exhibit motifs
of GATA1 and AP1; IDR-thresholded BRG1 data pro-
duced only noisy low information content motifs. We also
noticed that the motifs derived from different biological
replicates of the same ChIP-seq assay were sometimes in-
consistent. One replicate of the TEAD4 ChIP-seq assay
from the A549 cell line revealed only the NRSF binding mo-
tif, whereas both the cofactor AP1 and the primary motif
were derived from the other replicate.

Novel binding motifs

We uncovered six high-confidence novel motifs that have
not been previously annotated (Figure 3B). The ‘NM1’ mo-
tif was considerably enriched in the datasets of BAF155
and BRG1 (which do not bind DNA directly) from HeLa-
S3 cells and the ‘NM2’ motif was highly conserved in the
datasets of BCL11A and NANOG from H1-hESC cells.
The ‘NM3’ motif was revealed in the ESRRA and SREBF2
datasets from GM12878 cells, in the MAX dataset from
HCT116, in the CREB1 and GTF3C2 datasets from K562,
and in the non-DNA-binding RCOR1 dataset from IMR90
cells. The Euclidean distances between these novel motifs
and primary motifs are dissimilar, ranging from 3.1 to 3.4
bits/nt. The ‘NM4’, ‘NM5’ and ‘NM6’ motifs were discov-
ered in the datasets of GATA3, MXI1 and FOSL1 from
MCF-7, SK-N-SH and H1-hESC cells, respectively, with
distances ranging from 2.9 to 3.4 bits/nt.

We investigated whether these novel motifs were enriched
in hallmarks of open chromatin, based on the co-occurrence
with DNase I hypersensitive sites and near H3K4me and
H3K27ac histone modifications (112). After scanning the
complete genome with these iPWMs, the proportions of
sites detected within these corresponding ENCODE chro-
matin tracks were determined for the respective cell lines
(Table 2). These proportions (5–35%) are consistent with
previously reports of binding sites for other TFs (113). The
frequencies of sites detected with the NM2 and NM6 mo-
tifs within the H3K4me1 and H3K27ac peaks are signif-
icantly higher than those found after intersection of each
NM binding site with the H3K4me2 and H3K4me3 tracks,
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respectively. The co-occurence of NM2 and NM6 with the
H3K4me1 and H3K27ac epigenetic marks supports the as-
signment of these motifs as components of transcriptional
enhancer elements, because these histone modifications are
present in nucleosomes flanking enhancer elements (114).
Additionally, the co-occurence of these two motifs within
DNase I hypersensitive intervals exhibit the highest among
all the six motifs. The remaining motifs could represent
binding motifs of currently unknown TFs or other non-
annotated functional elements.

Binding site motif validation

Detection of true binding sites with iPWMs. A total of
803 experimentally-confirmed, previously published bind-
ing sites were verified for the 93 TFs whose primary bind-
ing motifs had been identified (Supplementary Table S5).
We detected these sites with the derived iPWMs by scanning
promoters of known TF target genes for binding elements
with positive Ri values. There was complete concordance
between these true binding sites and those detected with
the iPWMs, both in terms of their locations and relative
strengths. For example, an electrophoretic mobility shift as-
say analysis of the SERPINA3 promoter proved that the
nucleotide sequence starting at GRCh38 (chr14:94612260)
contains a stronger binding site of STAT1 than the one
starting at GRCh38 (chr14:94612291) (Supplementary Ta-
ble S5) (115); the binding site (5′-TTCTGGTAA-3′ with Ri
= 9.02 bits; Row 781) detected by the bipartite iPWM is
indeed 22.13 (or 4.38)-fold stronger than the other site (5′-
TTCTCGGA-3′ with Ri = 6.89 bits; Row 782) detected in
this promoter.

Correspondence between functionally characterized SNPs
and changes in information content. Based on the change
in the Ri value of a binding site, the effect of a SNP on
the binding site strength can be predicted with iPWMs
(10,12). For 153 SNPs within the binding sites of 29 TFs,
we determined Ri values of the variant sequence for the
corresponding iPWM and compared the predicted conse-
quence to observed TF binding, and if available, published
changes in expression (Supplementary Table S6). For 130
SNPs (∼85.0%) affecting binding sites of 27 TFs, the pre-
dictions of the iPWMs and the experimental observations
are completely concordant. For 16 SNPs (∼10.5%) affect-
ing binding sites of 10 TFs, the predicted and observed ex-
perimental findings are concordant, but the extents of these
changes differ (e.g. TF binding is predicted to only be weak-
ened, but binding or expression was completely abolished).
For 7 SNPs (∼4.6%) altering binding sites of three TFs, the
predicted and observed experimental changes were discor-
dant. iPWMs for two (CEBPB and SP1) of these three TFs
were validated for other SNPs.

Comparison between iPWMs and other binding motifs.
Binding motifs of eukaryotic TFs in the CIS-BP database
were previously reconstructed from oligonucleotide binding
selection assays (13); these motifs represent another type of
ground truth reflecting the genuine sequence preferences of
these TFs. For 133 TFs, we quantitatively compared the iP-
WMs with these motifs by determining the normalized Eu-
clidean distances between them, and classified the distances

Figure 6. F-test results evaluating the relationship between Ri values
and binding energy. The proportion of F-values within the first bin for
primary/cofactor motifs is much higher than that for noise motifs. A min-
imum threshold of 1000 correctly classifies all the noise motifs and 37.2%
(251/674) of primary/cofactor motifs.

into three categories. We observed that the iPWMs derived
in this study and the reconstructed motifs are nearly identi-
cal (<1 bit/nt) for 75 TFs, or only differ at 1 or 2 positions
(1-2 bits/nt) for 18 TFs. The discovery of cofactors was the
predominant explanation for large distances (>2 bits/nt)
for 39 of these TFs.

Statistical analyses on iPWMs. To distinguish true bind-
ing motifs from noise motifs, the relationship between Ri
values and binding energy was evaluated by performing F
tests on all binding sites in all of the contiguous iPWMs
that we derived (674 primary/cofactor, 312 noise). The F-
values are plotted as a histogram to illustrate probability
density distributions (Figure 6; data available in Supple-
mentary Tables S1 and S2). The histogram shows that most
F-values between 0 and 100 were significantly enriched for
noise motifs. In general, the F-values of primary/cofactor
motifs significantly exceed those derived from noise. The
primary/cofactor motif and noise motif distributions are
different (Mann–Whitney U test; P = 3.1E-57 at 1% signif-
icance level). We note that only primary and cofactor mo-
tifs exhibit F-values > 1000, which comprise 37.2% (251 of
674) of all iPWMs. The iPWMs with F-values < 1000 re-
main valid based on the other criteria described above.

DISCUSSION

In this study, we derived and validated TF binding mo-
tifs from ChIP-seq datasets using an information theory-
based approach, also revealing TF cofactor binding sites
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Table 2. Percentages of binding sites from novel motifs (NM) that overlap DNase I hypersensitive intervals and/or regions of specific histone modifications

ENCODE Genome Browser Track

Novel motif DNase I HS H3K4me1 H3K4me2 H3K4me3 H3K27ac

NM1† 4.50% 17.63% 15.52% 16.23% 11.44%
NM2† 7.06% 33.63% 14.39% 9.61% 34.05%
NM3† 4.21% 21.19% 16.89% 13.75% 12.25%
NM4 3.18% N/A* N/A* 1.04% 2.22%
NM5 2.31% N/A* N/A* 1.21% N/A*

NM6 6.16% 32.37% 13.58% 9.36% 34.10%

*The histone modification data for the specific cell line used to derive the iPWM is unavailable.
†The iPWMs of the NM1, NM2 and NM3 motifs used to scan the hg19 genome assembly come from the datasets of BAF155, NANOG and ESRRA,
respectively.

and other novel motifs. The primary TF motifs were val-
idated by comparison with motifs derived independently
from binding studies, by analysis of gene variants known to
alter TF binding affinities, and by comparing the locations
of binding sites predicted by iPWMs with those of true sites
previously determined in published binding and expression
studies. In addition to contiguous iPWMs, bipartite iPWMs
with variable-length spacers were also derived. These iP-
WMs more precisely reflect the binding behavior of dimeric
TFs, as they incorporate intermediate and often weak bind-
ing sites that are often excluded from consensus sequence-
based (strong) binding site sets (3). This enables these iP-
WMs to accurately quantify binding site strengths across a
broad range of affinities (Supplementary Table S5). To test
this, the iPWMs were applied to mutation analyses of reg-
ulatory SNPs (Supplementary Table S6). We have recently
used this approach to identify and prioritize variants affect-
ing TF binding in 20 risk genes of 287 hereditary breast and
ovarian cancer patients (116) and 7 genes from 102 such pa-
tients (117). In present study, the iPWMs were also used to
delineate known and novel TF-cofactor interactions.

TF binding sites across the genome have been predicted
from promoter accessibility analyses with high-throughput
DNase-seq assays. For each of 20 TFs, Yardımcı et al. (118)
obtained a set of true binding sites by intersecting ChIP-seq
peaks with the 50 000 strongest binding sites predicted by
JASPAR and TRANSFAC PWMs in the genome. The FLR
(Footprint Log-likelihood Ratio), which is defined as the
logarithm of the ratio between probabilities that a DNase
I footprint is produced by either a true binding site or a
background sequence, was determined at these sites. We at-
tempted to detect these true sites using the derived iPWMs.
For these 20 TFs, all of these sites (ranging from n = 31 to
21 550, depending on the TF) were successfully detected by
the iPWMs (Ri > 0). By contrast, the FLR identified 35–
85% of the verified binding sites (Supplementary Table S7).
As weak binding sites tend not to generate footprints and
thus not to be discovered by DNase-seq, the expectation is
that the sites detected by DNase-seq would be stronger than
those that evade detection. In fact, this trend was observed
for only 10 TFs and the average strengths of these classes of
these binding sites were not significantly different.

In the Maskminent pipeline, the weak peaks below the
threshold signal intensity do not necessarily contain weak
or are missing binding sites; in fact, the distribution of Ri
values of binding sites in these bottom peaks is similar to

that in the top peaks used to derive the iPWM (Supplemen-
tary Methods). Thresholding the dataset is required in order
to ensure that the iPWM for the primary motif consists of
binding sites from as many peaks as possible, while prevent-
ing alternative motifs from dominating the objective func-
tion used in Maskminent.

We also compared results produced by the Maskminent
pipeline with other motif discovery tools from two perspec-
tives of revealing primary and cofactor binding motifs (Sup-
plementary Table S8). MEME-ChIP was previously used
to derive motifs for 457 ChIP-seq datasets (119) and Se-
qGL (120) was used to analyze 105 datasets. Among the
sequence-specific TFs (n = 98) investigated by both tools,
Maskminent and MEME-ChIP discovered primary motifs
for 80 (∼81.6%) and 92 (∼93.9%) TFs, respectively. Among
the 59 TF datasets analyzed by Maskminent, MEME-
ChIP, SeqGL and HOMER (121), primary motifs were re-
vealed for 45 (∼76.3%), 51 (∼86.4%), 49 (∼83.1%) and 47
(∼79.7%) datasets, respectively. The cofactor motifs that
Maskminent found (which MEME-ChIP and SeqGL failed
to detect) primarily comprise the SP family. Since MEME
and SeqGL discriminate binding sites from background se-
quences using nucleotide frequencies computed from all in-
put sequences, binding motifs with compositions similar
to the background may fail to be discovered, such as the
SP motif; in contrast, Maskminent does not rely on back-
ground compositions and will always return the lowest en-
tropy motif. While MEME-ChIP and SeqGL revealed a
greater number of cofactor motifs, selecting only the top
500 or 2000 peaks increases the likelihood that those cofac-
tors appeared by chance. This is because MEME-ChIP and
SeqGL were configured to report multiple motifs, whereas
the main objective of Maskminent was to discover primary
motifs (i.e. if the initial iPWM derived from a dataset ex-
hibits the primary motif, the masking and thresholding
techniques will no longer be used, unless it is explicitly
masked). Finally, the ability of Maskminent, MEME-ChIP,
SeqGL to reveal binding motifs was compared on the 105
datasets (120). Each tool discovers cofactor motifs that oth-
ers do not recognize.

Arvey et al. (26) trained support vector machines (SVMs)
that use flexible k-mer patterns to capture DNA sequence
signals more accurately from 286 ChIP-seq experiments
than traditional motif approaches, and these SVMs can also
integrate histone modifications and DNase accessibility to
significantly more accurately predict TF occupancy than
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simpler approaches. However, the SVM approach does not
provide any insight into binding strength. Even though ac-
cessibility constrains the number of binding sites and in-
creases the accuracy of binding site detection, it is not pos-
sible to compare binding site strengths once the designated
sites are combined with DNase I hypersensitivity profiles
and other chromatin accessibility marks.

In fact, the number of TFs for which cofactor motifs were
revealed exceeds the number of TFs whose primary binding
motifs were discovered, partially because only cofactor mo-
tifs can be found in the datasets of TFs which exhibit little or
no sequence specificity (e.g. CCNT2, INI1 and P300). For
11 primary TFs, the binding site sequences were extremely
variable; that is, the overall conservation levels of their bind-
ing motifs contain less information than noisy, low com-
plexity sequences or cofactor motifs. For 18 primary TFs
associated with cofactors, which themselves physically con-
tact DNA, the primary TF motif was not enriched. The in-
ability of the software to discover such primary motifs is a
limitation of this approach. Interactions between the pri-
mary TFs and a subset of the cofactors which are known
to cooperate with them were detected, since the association
has to occur with a prevalence sufficient to produce a recog-
nizable motif (usually >0.5 bit/nt over the entire site). Nev-
ertheless, the algorithm may not find cofactors with weakly
conserved motifs or those that overlap with other conserved
motifs.

While unable to discover cofactors nor identify bipartite
motifs of variable spacing, the oligonucleotide microarray
technique adopted by Weirauch et al. (13) and Jolma et al.
(14) theoretically is able to determine binding specificities
for all the sequence-specific TFs, because contiguous bind-
ing sites of TFs are reconstructed from overlapping oligonu-
cleotide sequences by directly detecting complexes with the
TF. This eliminates interference of noisy sequences or co-
factors which may emerge as false minimum entropies using
our method.

The Maskminent pipeline can be applied to other ChIP-
seq data not included in ENCODE. The quality control cri-
teria we described are capable of ensuring that the user-built
iPWMs are accurate and can be used for binding site detec-
tion. The first and second criteria are particularly impor-
tant, because they provide a straightforward assessment of
iPWM performance. The recursively thresholded feature is
crucial for guaranteeing that the discovered cofactors do
not appear by chance, because the greater the number of
peaks from which a cofactor is derived, the higher the con-
fidence that the cofactor indeed interacts with the primary
factor.

In summary, we comprehensively investigated and imple-
mented a new approach to define TF binding specificities
based on the ChIP-seq TF data that ENCODE has released.
This allowed us to mine and quantify both known and pre-
viously unrecognized TF binding motifs and cofactor in-
teractions on a genome scale. This information expands the
granularity of the current knowledge on TF interaction with
DNA and points out potential directions for future experi-
mental study on interaction between TFs.

SOFTWARE AVAILABILITY

http://dx.doi.org/10.5281/zenodo.49234 and https://www.
mutationforecaster.com.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank the reviewers for their comments, which we have
addressed at http://dx.doi.org/10.1101/042853. We also ac-
knowledge SHARCNET and Compute Canada for provid-
ing high performance computing facilities.

FUNDING

Natural Sciences and Engineering Research Council of
Canada Discovery Grant [371758-2009]; Canadian Foun-
dation for Innovation; Canada Research Chairs; Cytog-
nomix Inc. Funding for open access charge: University of
Western Ontario.
Conflict of interest statement. P.K.R. is the inventor of US
Patent 5 867 402 and other patents pending, which apply
iPWMs to the prediction and validation of mutations. He
cofounded Cytognomix, Inc., which is developing software
based on this technology for complete genome or exome
mutation analysis.

REFERENCES
1. Leung,K.K., Ng,L.J., Ho,K.K., Tam,P.P. and Cheah,K.S. (1998)

Different cis-regulatory DNA elements mediate developmental
stage- and tissue-specific expression of the human COL2A1 gene in
transgenic mice. J. Cell Biol., 141, 1291–1300.

2. Levine,M. and Tjian,R. (2003) Transcription regulation and animal
diversity. Nature, 424, 147–151.

3. Wang,J., Zhuang,J., Iyer,S., Lin,X., Whitfield,T.W., Greven,M.C.,
Pierce,B.G., Dong,X., Kundaje,A., Cheng,Y. et al. (2012) Sequence
features and chromatin structure around the genomic regions bound
by 119 human transcription factors. Genome Res., 22, 1798–1812.

4. Jolma,A., Yin,Y., Nitta,K.R., Dave,K., Popov,A., Taipale,M.,
Enge,M., Kivioja,T., Morgunova,E. and Taipale,J. (2015)
DNA-dependent formation of transcription factor pairs alters their
binding specificity. Nature, 527, 384–388.

5. Parelho,V., Hadjur,S., Spivakov,M., Leleu,M., Sauer,S.,
Gregson,H.C., Jarmuz,A., Canzonetta,C., Webster,Z., Nesterova,T.
et al. (2008) Cohesins functionally associate with CTCF on
mammalian chromosome arms. Cell, 132, 422–433.

6. Fleming,J.D., Pavesi,G., Benatti,P., Imbriano,C., Mantovani,R. and
Struhl,K. (2013) NF-Y coassociates with FOS at promoters,
enhancers, repetitive elements, and inactive chromatin regions, and
is stereo-positioned with growth-controlling transcription factors.
Genome Res., 23, 1195–1209.

7. ENCODE Project Consortium (2012) An integrated encyclopedia of
DNA elements in the human genome. Nature, 489, 57–74.

8. Bi,C. and Rogan,P.K. (2004) Bipartite pattern discovery by entropy
minimization-based multiple local alignment. Nucleic Acids Res., 32,
4979–4991.

9. Shannon,C.E. (1948) A mathematical theory of communication.
Bell Syst. Technol. J., 27, 379–423.

10. Schneider,T.D. (1997) Information content of individual genetic
sequences. J. Theor. Biol., 189, 427–441.

11. Schneider,T.D. (1999) Measuring molecular information. J. Theor.
Biol., 201, 87–92.

12. Rogan,P.K., Faux,B.M. and Schneider,T.D. (1998) Information
analysis of human splice site mutations. Hum. Mutat., 12, 153–171.

http://dx.doi.org/10.5281/zenodo.49234
https://www.mutationforecaster.com
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkw1036/-/DC1
http://dx.doi.org/10.1101/042853


12 Nucleic Acids Research, 2016

13. Weirauch,M.T., Yang,A., Albu,M., Cote,A.G.,
Montenegro-Montero,A., Drewe,P., Najafabadi,H.S., Lambert,S.A.,
Mann,I., Cook,K. et al. (2014) Determination and inference of
eukaryotic transcription factor sequence specificity. Cell, 158,
1431–1443.

14. Jolma,A., Yan,J., Whitington,T., Toivonen,J., Nitta,K.R., Rastas,P.,
Morgunova,E., Enge,M., Taipale,M., Wei,G. et al. (2013)
DNA-binding specificities of human transcription factors. Cell, 152,
327–339.

15. Kheradpour,P. and Kellis,M. (2014) Systematic discovery and
characterization of regulatory motifs in ENCODE TF binding
experiments. Nucleic Acids Res., 42, 2976–2987.

16. Schneider,T.D. (2002) Consensus sequence Zen. Appl.
Bioinformatics, 1, 111–119.

17. Landt,S.G., Marinov,G.K., Kundaje,A., Kheradpour,P., Pauli,F.,
Batzoglou,S., Bernstein,B.E., Bickel,P., Brown,J.B., Cayting,P. et al.
(2012) ChIP-seq guidelines and practices of the ENCODE and
modENCODE consortia. Genome Res., 22, 1813–1831.

18. Wang,J., Zhuang,J., Iyer,S., Lin,X.-Y., Greven,M.C., Kim,B.-H.,
Moore,J., Pierce,B.G., Dong,X., Virgil,D. et al. (2013)
Factorbook.org: a Wiki-based database for transcription
factor-binding data generated by the ENCODE consortium. Nucleic
Acids Res., 41, D171–D176.

19. Kharchenko,P.V., Tolstorukov,M.Y. and Park,P.J. (2008) Design and
analysis of ChIP-seq experiments for DNA-binding proteins. Nat.
Biotechnol., 26, 1351–1359.

20. Bailey,T.L., Boden,M., Buske,F.A., Frith,M., Grant,C.E.,
Clementi,L., Ren,J., Li,W.W. and Noble,W.S. (2009) MEME
SUITE: tools for motif discovery and searching. Nucleic Acids Res.,
37, W202–W208.

21. Tanay,A. (2006) Extensive low-affinity transcriptional interactions
in the yeast genome. Genome Res., 16, 962–972.

22. El Marzouk,S., Gahattamaneni,R., Joshi,S.R. and Scovell,W.M.
(2008) The plasticity of estrogen receptor-DNA complexes: binding
affinity and specificity of estrogen receptors to estrogen response
element half-sites separated by variant spacers. J. Steroid Biochem.
Mol. Biol., 110, 186–195.

23. Eckert,D., Buhl,S., Weber,S., Jager,R. and Schorle,H. (2005 ) The
AP-2 family of transcription factors. Genome Biol., 6, 246.

24. Ehret,G.B., Reichenbach,P., Schindler,U., Horvath,C.M., Fritz,S.,
Nabholz,M. and Bucher,P. (2001) DNA binding specificity of
different STAT proteins. Comparison of in vitro specificity with
natural target sites. J. Biol. Chem., 276, 6675–6688.

25. Kataoka,K., Noda,M. and Nishizawa,M. (1994) Maf nuclear
oncoprotein recognizes sequences related to an AP-1 site and forms
heterodimers with both Fos and Jun. Mol. Cell. Biol., 14, 700–712.

26. Arvey,A., Agius,P., Noble,W.S. and Leslie,C. (2012) Sequence and
chromatin determinants of cell-type-specific transcription factor
binding. Genome Res., 22, 1723–1734.

27. Kawana,M., Lee,M.E., Quertermous,E.E. and Quertermous,T.
(1995) Cooperative interaction of GATA-2 and AP1 regulates
transcription of the endothelin-1 gene. Mol. Cell. Biol., 15,
4225–4231.

28. Roca,H., Pande,M., Huo,J.S., Hernandez,J., Cavalcoli,J.D.,
Pienta,K.J. and McEachin,R.C. (2014) A bioinformatics approach
reveals novel interactions of the OVOL transcription factors in the
regulation of epithelial - mesenchymal cell reprogramming and
cancer progression. BMC Syst. Biol., 8, 29.

29. Zhu,C., Johansen,F.E. and Prywes,R. (1997) Interaction of ATF6
and serum response factor. Mol. Cell. Biol., 17, 4957–4966.

30. Zhang,X., Wrzeszczynska,M.H., Horvath,C.M. and Darnell,J.E.
(1999) Interacting regions in Stat3 and c-Jun that participate in
cooperative transcriptional activation. Mol. Cell. Biol., 19,
7138–7146.

31. Ito,T., Yamauchi,M., Nishina,M., Yamamichi,N., Mizutani,T.,
Ui,M., Murakami,M. and Iba,H. (2001) Identification of SWI.SNF
complex subunit BAF60a as a determinant of the transactivation
potential of Fos/Jun dimers. J. Biol. Chem., 276, 2852–2857.

32. Na,S.Y., Choi,J.E., Kim,H.J., Jhun,B.H., Lee,Y.C. and Lee,J.W.
(1999) Bcl3, an IkappaB protein, stimulates activating protein-1
transactivation and cellular proliferation. J. Biol. Chem., 274,
28491–28496.

33. Henderson,A., Holloway,A., Reeves,R. and Tremethick,D.J. (2004)
Recruitment of SWI/SNF to the human immunodeficiency virus
type 1 promoter. Mol. Cell. Biol., 24, 389–397.

34. Lee,J.S., See,R.H., Deng,T. and Shi,Y. (1996) Adenovirus E1A
downregulates cJun- and JunB-mediated transcription by targeting
their coactivator p300. Mol. Cell. Biol., 16, 4312–4326.

35. Schwartz,C., Beck,K., Mink,S., Schmolke,M., Budde,B.,
Wenning,D. and Klempnauer,K.-H. (2003) Recruitment of p300 by
C/EBPbeta triggers phosphorylation of p300 and modulates
coactivator activity. EMBO J., 22, 882–892.

36. Bailey,S.D., Zhang,X., Desai,K., Aid,M., Corradin,O., Cowper-Sal
Lari,R., Akhtar-Zaidi,B., Scacheri,P.C., Haibe-Kains,B. and
Lupien,M. (2015) ZNF143 provides sequence specificity to secure
chromatin interactions at gene promoters. Nat. Commun., 2, 6186.

37. O’Geen,H., Lin,Y.-H., Xu,X., Echipare,L., Komashko,V.M., He,D.,
Frietze,S., Tanabe,O., Shi,L., Sartor,M.A. et al. (2010)
Genome-wide binding of the orphan nuclear receptor TR4 suggests
its general role in fundamental biological processes. BMC Genomics,
11, 689.

38. Elagib,K.E., Racke,F.K., Mogass,M., Khetawat,R., Delehanty,L.L.
and Goldfarb,A.N. (2003) RUNX1 and GATA-1 coexpression and
cooperation in megakaryocytic differentiation. Blood, 101,
4333–4341.

39. Xu,Z., Meng,X., Cai,Y., Koury,M.J. and Brandt,S.J. (2006)
Recruitment of the SWI/SNF protein Brg1 by a multiprotein
complex effects transcriptional repression in murine erythroid
progenitors. Biochem. J., 399, 297–304.

40. Grau,J., Grosse,I., Posch,S. and Keilwagen,J. (2015) Motif clustering
with implications for transcription factor interactions. German Conf.
Bioinformatics, doi:10.7287/peerj.preprints.1302v1.

41. Albergaria,A., Paredes,J., Sousa,B., Milanezi,F., Carneiro,V.,
Bastos,J., Costa,S., Vieira,D., Lopes,N., Lam,E.W. et al. (2009)
Expression of FOXA1 and GATA-3 in breast cancer: the prognostic
significance in hormone receptor-negative tumours. Breast Cancer
Res. BCR, 11, R40.

42. Cirillo,L.A. and Zaret,K.S. (1999) An early developmental
transcription factor complex that is more stable on nucleosome core
particles than on free DNA. Mol. Cell, 4, 961–969.

43. Grabowska,M.M., Elliott,A.D., DeGraff,D.J., Anderson,P.D.,
Anumanthan,G., Yamashita,H., Sun,Q., Friedman,D.B.,
Hachey,D.L., Yu,X. et al. (2014) NFI transcription factors interact
with FOXA1 to regulate prostate-specific gene expression. Mol.
Endocrinol. Baltim. Md., 28, 949–964.

44. Kohler,S. and Cirillo,L.A. (2010) Stable chromatin binding prevents
FoxA acetylation, preserving FoxA chromatin remodeling. J. Biol.
Chem., 285, 464–472.

45. Kardassis,D., Falvey,E., Tsantili,P., Hadzopoulou-Cladaras,M. and
Zannis,V. (2002) Direct physical interactions between HNF-4 and
Sp1 mediate synergistic transactivation of the apolipoprotein CIII
promoter. Biochemistry (Mosc.), 41, 1217–1228.

46. Xu,L., Ma,X., Bagattin,A. and Mueller,E. (2016) The
transcriptional coactivator PGC1� protects against hyperthermic
stress via cooperation with the heat shock factor HSF1. Cell Death
Dis., 7, e2102.

47. Hurgin,V., Novick,D. and Rubinstein,M. (2002) The promoter of
IL-18 binding protein: activation by an IFN-gamma -induced
complex of IFN regulatory factor 1 and CCAAT/enhancer binding
protein beta. Proc. Natl. Acad. Sci. U.S.A., 99, 16957–16962.

48. Kuwata,T., Gongora,C., Kanno,Y., Sakaguchi,K., Tamura,T.,
Kanno,T., Basrur,V., Martinez,R., Appella,E., Golub,T. et al. (2002)
Gamma interferon triggers interaction between ICSBP (IRF-8) and
TEL, recruiting the histone deacetylase HDAC3 to the
interferon-responsive element. Mol. Cell. Biol., 22, 7439–7448.

49. Leng,R.-X., Wang,W., Cen,H., Zhou,M., Feng,C.-C., Zhu,Y.,
Yang,X.-K., Yang,M., Zhai,Y., Li,B.-Z. et al. (2012) Gene-gene and
gene-sex epistatic interactions of MiR146a, IRF5, IKZF1, ETS1
and IL21 in systemic lupus erythematosus. PLoS One, 7, e51090.

50. Drew,P.D., Franzoso,G., Becker,K.G., Bours,V., Carlson,L.M.,
Siebenlist,U. and Ozato,K. (1995) NF kappa B and interferon
regulatory factor 1 physically interact and synergistically induce
major histocompatibility class I gene expression. J. Interferon
Cytokine Res. Off. J. Int. Soc. Interferon Cytokine Res., 15,
1037–1045.



Nucleic Acids Research, 2016 13

51. Ziegler-Heitbrock,L., Lötzerich,M., Schaefer,A., Werner,T.,
Frankenberger,M. and Benkhart,E. (2003) IFN-alpha induces the
human IL-10 gene by recruiting both IFN regulatory factor 1 and
Stat3. J. Immunol. Baltim. Md 1950, 171, 285–290.

52. Dornan,D., Eckert,M., Wallace,M., Shimizu,H., Ramsay,E.,
Hupp,T.R. and Ball,K.L. (2004) Interferon regulatory factor 1
binding to p300 stimulates DNA-dependent acetylation of p53. Mol.
Cell. Biol., 24, 10083–10098.

53. Roopra,A., Sharling,L., Wood,I.C., Briggs,T., Bachfischer,U.,
Paquette,A.J. and Buckley,N.J. (2000) Transcriptional repression by
neuron-restrictive silencer factor is mediated via the Sin3-histone
deacetylase complex. Mol. Cell. Biol., 20, 2147–2157.

54. Gutierrez,S., Javed,A., Tennant,D.K., van Rees,M., Montecino,M.,
Stein,G.S., Stein,J.L. and Lian,J.B. (2002)
CCAAT/enhancer-binding proteins (C/EBP) beta and delta activate
osteocalcin gene transcription and synergize with Runx2 at the
C/EBP element to regulate bone-specific expression. J. Biol. Chem.,
277, 1316–1323.

55. Ciavatta,D.J., Yang,J., Preston,G.A., Badhwar,A.K., Xiao,H.,
Hewins,P., Nester,C.M., Pendergraft,W.F., Magnuson,T.R.,
Jennette,J.C. et al. (2010) Epigenetic basis for aberrant upregulation
of autoantigen genes in humans with ANCA vasculitis. J. Clin.
Invest., 120, 3209–3219.

56. Kitabayashi,I., Yokoyama,A., Shimizu,K. and Ohki,M. (1998)
Interaction and functional cooperation of the leukemia-associated
factors AML1 and p300 in myeloid cell differentiation. EMBO J.,
17, 2994–3004.

57. Chiang,B.-T., Liu,Y.-W., Chen,B.-K., Wang,J.-M. and Chang,W.-C.
(2006) Direct interaction of C/EBPdelta and Sp1 at the
GC-enriched promoter region synergizes the IL-10 gene
transcription in mouse macrophage. J. Biomed. Sci., 13, 621–635.
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