
The first round of review: 

Responses to the comments of the reviewer #1: 

 

1. The reviewer said that in its objective function Bipad minimizes Shannon information which is 

identical to entropy. 

Our response:  

Shannon information is not equal to entropy. The Bipad algorithm actually minimizes the 

entropy of the multiple alignment from a ChIP-seq dataset; alternatively, it maximizes Shannon 

information content of the multiple alignment.  

The entropy of a multiple alignment is the sum of the entropy of all the individual positions; 

the entropy    of a position   is computed using the following Equation 1 (6). 

              
 

      
 

   

                     

where        is the frequency of base   at position  . 

The information content of a multiple alignment is the sum of the information contents of all 

the individual positions; the information content              of the position   is computed using 

the following Equation 2 (6). 

                          
 

      
 

   

                              

Therefore,              will increase as    decreases. The multiple alignment with the minimum 

entropy will have the maximum information content. 

 

 

2. The reviewer said that Shannon entropy does not use pseudocounts, and is the objective 

function used in MEME. 

Our response:  

1. The statement, ‘Shannon entropy does not use pseudocounts’, is wrong. In the 

Maskminent/Bipad algorithm, a pseudocount    is used when computing the frequency of each 

base   at the position   using the following Equation 3 (7). Each pseudocount    is set to 0.25 × 

1.5 (7, 8). 

       
       
        

                     

where      is the number of base   at position  ,   is the number of DNA sequences in the 

alignment. 

2. The statement, ‘Shannon entropy is up to an additive constant the same as the log 

likelihood under a multinomial statistical model, the standard objective function in many motif 

discovery algorithms such as MEME.’, is wrong. The objective function of the Maskminent 

algorithm based on Shannon information theory differs from that of the MEME algorithm based 



on probability theory. In summary, the difference is that the core principle of Maskminent’s 

objective function is Entropy Minimization which seeks the multiple alignment with the minimum 

entropy in the entire multiple alignment search space formed by a ChIP-seq dataset, whereas 

the core principle of MEME’s objective function is Expectation Maximization which is used to fit 

a two-compoment (motif and background DNA) finite mixture model to a ChIP-seq dataset (9). 

The objective function of Maskminent is given below: 

                                
 

       
    

  
            ,                      

where MA is one multiple alignment, oMA is the globally optimal multiple alignment, θ is the 

entire multiple alignment space formed by all the peaks in the ChIP-seq, L and R are the left 

and right half sites respectively, J is the length of one half site, fm(b,l) is the frequency of the 

base x appearing at the position l of the half site m. 

The MEME algorithm views the ChIP-seq dataset as a mixture of two components (the motif 

model and background model), but the way of this mixture is unknown (i.e. the parameters in 

the two models and the mixing parameters are unknown). The dataset is broken up 

conceptually into all overlapping subsequences of motif length which it contains (9). Therefore, 

the goal of this algorithm is to discriminate motif DNA from background DNA in a mathematically 

optimal way (i.e. to search for maximum likelihood estimates of the parameters of a finite 

mixture model which could have generated the dataset (9)). 

The objective function of the E-step of the Expectation Maximization algorithm used by 

MEME is the following: (9) 

                      
                  

 

   

 

   

      
              

 

   

 

   

      
        

 

   

 

   

         

where                which represents the ChIP-seq dataset containing   peaks,   

        which are the parameters in the motif model and background model,           which 

are the mixing parameters (i.e. the probabilities of the two models),    represents which model 

each subsequence is generated from. 

The M-step of the Expectation Maximization algorithm maximizes Equation 5 over   and   to 

find the next estimates for them (e.g.    and   ). The maximization over   only involves the 

second term in Equation 2, and the maximization over   only involves the first term in Equation 

2. 

  
          

 
     

        

 

   

 

   

          
          

  
    

                      

 

   

   

Maskminent does not require a background component (ie. it is not based on Kullback–

Leibler divergence but rather Shannon entropy), which is why it can be used to determine the 

affinity of a binding site to its cognate TF (see reference 9 of the manuscript). While MEME is 

capable of detecting secondary motifs, the algorithm’s authors [9] indicate that application of 

objective function to detect secondary motifs generally has much lower likelihoods than for the 

primary motif. We believe that this may explain why Maskminent can sometimes detect motifs 

that MEME misses. 

 

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence


 

3. The reviewer suggested that the previous title of the paper, “Recursive, thresholded entropy 

minimization”, is inappropriate for the Maskminent pipeline, in that it only attempts to determine 

the optimal number of ChIP-seq peaks. 

Our response:  

‘Recursive, thresholded entropy minimization’ is an appropriate term for the paper, because it 

accurately and aptly describes the characteristics of the Maskminent motif discovery pipeline. 

We retain this description in the paper, however we have simplified the title of the article to one 

which should be more accessible for NAR readers. 

The foundation of this pipeline is the original Bipad algorithm based on entropy minimization. 

However, our systematic approach for cofactor and novel motif discovery required the novel 

recursion and thresholding elements that were introduced in this study. ‘Recursive’ refers to the 

fact that on a ChIP-seq dataset the masking and thresholding techniques can be used iteratively. 

‘Thresholded’ refers to the functionality of thresholding the dataset to take top peaks ranked by 

signal strength. 

 

 

4. The reviewer said that we did not describe the approach to seek the optimal number of ChIP-

seq peaks. 

Our response:  

In the initial submission, the approach for determining the number of top ranked peaks that 

exhibit the desired motif was described in the paragraph starting with ‘Thresholding the datasets 

to eliminate peaks…’ and in the Supplementary Figure S1.  

In this resubmission, it is described in more detail in the paragraph starting with ‘To eliminate 

noisy patterns that…’, and in the flowchart of the Maskminent pipeline (Section 2.1, Page 3) in 

the Supplementary Methods file. 

 

 

5. The reviewer said that the descriptions in the Methods section was unrelated to the 

pseudocode in Supplementary Figure 1 (which was present in the initial submission). 

Our response:  

In the initial submission, the explanations in the method section and the pseudocode of the 

algorithm in Supplementary Figure S1 were completely consistent. 

In this resubmission, the pseudocode was converted to a flowchart describing the 

Maskminent pipeline in the Supplementary Methods file. 

 

 



6. The reviewer said that we did not indicate if the lengths of the half sites, the size of the gap 

range, the number of motifs to be returned are input by the use or automatically generated by 

the Maskminent software. 

Our response:  

In the initial submission, the self-explanatory arguments in the two commands running the 

Maskminent program in the Methods section, which are shown below, indicated that the length 

of each half site and the range of the gap length are provided by the user. We empirically test a 

range of motif lengths and gap ranges based on previously published evidence for each primary 

TF.  Supplementary Figure S1 indicates that the number of motifs to be derived from a ChIP-

seq dataset is determined by the Maskminent pipeline by indicating when the pipeline will stop 

on the dataset.  

./Maskminent –n LengthOfInfoModel –y NumberOfCycles –f ChIPseqFile [-m MaskFile] [-2] 

     ./Maskminent –l LengthOfLeftHalfSite –r LengthOfRightHalfSite –a MinSpacerSize –b 

MaxSpacerSize  -y NumberOfCycles –f ChIPseqFile –d/i 

In this resubmission, the two commands appear in the Supplementary Methods file (Section 

2.2, Page 4). The flowchart of the Maskminent pipeline in the Supplementary Methods replaces 

the Supplementary Figure S1 in the Supplementary Methods file. 

 

 

7. The reviewer said that the approach to calculate dissociation constants is incorrect ("A default 

value 1E-7 M of the dissociation constant Kd1 was approximated in instances where the exact 

value for a particular TF could not be established from published studies on TF-binding site 

measurements."). 

Our response:  

1. This approach of calculating dissociation constants is correct, and there is precedent for 

the low intracellular concentration of many TFs (10). In the initial submission, Equation 8 is used 

to calculate the dissociation constant of a binding site sequence. 

     
  

           

  
 

              

where     is the dissociation constant of the  th predicted binding site,   
  is the frequency of the 

 th site in a round of bounding (i.e. the frequency of the  th site appearing in the ChIP-seq 

dataset),     and   
  are these values for the strongest site (i.e. the consensus sequence),      

is the concentration of the unbound TF. 

Equation 8 was derived by recognizing that the thermodynamics of a population of TF-bound 

sequences is similar to a SELEX experimental framework (11). Below the detailed derivation is 

given.  

From Levine et al. (11), first we obtain 9: 

  
 

  
 
 
        

        
 
  
  
         



where    is the frequency of the  th site in the prior round of bounding (i.e. in the genome),    is 

this value for the strongest site (i.e. the consensus sequence). 

Multiply both sides of Equation 9 by   
 , then we obtain Equation 10: 

  
  

        

        
 
  
  
   

           

Given that the consensus sequence is an extremely infrequent binding site both in the 

unselected population of binding sites and in the genome (12), we assume that its frequency will 

be similar during the early rounds of selection (i.e.      
 ). Then, we obtain Equation 11:  

  
  

        

        
   

           

Solving for    , then we obtain Equation 8.      is negligible for most TFs, because the 

steady-state concentrations of most TFs inside cells are quite low due to their high turnover 

rates (i.e. in the nM range), and      is only a fraction of them (10). Therefore, we obtain 

Equation 12 which suggests that the dissociation constants of binding sites are inversely 

proportional to their frequencies. 

     
  

    

  
 
          

Take the logarithm of both sides, then we obtain Equation 13 which suggests that the binding 

energy (       ) of binding sites is related to their frequencies. 

             
  

    

  
 
          

Additionally, the    values of binding sites are proportionate to their frequencies, since the 

stronger a binding site is, the more the number of times it is bound by the TF will be in a ChIP-

seq assay. Therefore, the binding energy (       ) of binding sites is related to their    values. 

It is expected that there exists a linearity between them when plotting         versus   . 

2. In this resubmission for all the TFs we used 10-7M as the default value for the dissociation 

constant    , which is correct. This is because on an iPWM using different values for     will 

lead to the same F-test value. The detailed proof is given below. 

Assume that for     we use two different values    
  and    

 . According to Equation 12, we 

have 

   
   

  
    

 

  
 
                     

   
  

    
 

  
 
          

Combining Equations 14 and 15, we obtain 

   
   

   
 

   
    

           

Take the logarithm of both sides, then we obtain 

       
         

      
   
 

   
           

Equation 17 implies that in the graph of    (X axis) versus binding energy (Y axis), the Y-axis 

values of all the data points will change the same amount (    
   
 

   
 ) with the X-axis values 



remaining unchanged when    
  and    

  are used. This implies that the residual sum of squares 

(RSS) of the linear fitting model does not change when    
  and    

  are used, and the RSS of 

the constant fitting model does not change either. According to the following Equation 18 

computing the F statistic, the resultant F-test value does not change when the two different 

values    
  and    

  are used. 

   
 
         
     

 

 
    
    

 
          

where      is the RSS of the linear model,      is the RSS of the constant model,   is the 

number of data points (i.e. the number of binding sites in the iPWM),    is the freedom of the 

linear model (i.e. 2),    is the freedom of the constant model (i.e. 1). 

 

 

8. The reviewer said that we used poor-quality ChIP-seq datasets. 

Our response:  

In fact, the datasets used to derive our iPWMs were of the highest overall quality available. 

We used the initial and the IDR-thresholded ChIP-seq peak datasets released by the ENCODE 

Consortium (13), which is generally acknowledged to be a gold standard for ChIP-seq data, and 

the refined datasets generated by the SPP peak calling software and provided by Factorbook 

(3). There is no a priori evidence indicating that the IDR-thresholded and SPP peak called 

datasets are of low-quality. 

 

 

9. The reviewer said that the CIS-BP database is obscure in the area and includes the motifs 

produced by Bipad. 

Our response:  

1. The CIS-BP (Catalog of Inferred Sequence Binding Preferences) database is a library of 

transcription factor DNA binding motifs and specificities, which was established in a previous 

study (Weirauch et al. (1)). We find it perplexing that the reviewer was not aware of this 

database, since it comprises the largest set of experimentally-validated binding sites available at 

the time the present study began.  

2. This database does not include any motifs generated by Bipad, because its motifs were 

independently generated from frequencies of bound oligonucleotide, inferred from the PBM 

(Protein Binding Microarray) technique. 

 

 



10. About the sentence “Transcription factors positively or negatively interact with the regulatory 

elements in genes […]” which exists in the initial submission, the reviewer asked us what a 

negative interaction means. 

Our response:  

In this resubmission, this sentence has been revised to: ‘Transcription factors interact with 

regulatory elements in genes to mediate positive or negative regulation of tissue- and stage-

specific expression.’ 

 

 

11. About the sentence “NF-Y extensively coassociates with FOS over […] cluster classes […]” 

which exists in the initial submission, the reviewer asked us what ‘cluster classes’ mean. 

Our response:  

In this resubmission, this sentence has been rewritten: ‘For instance, NF-Y extensively 

coassociates with FOS over all chromatin states…’. 

 

 

12. About the sentence “[…] the dynamic range of oligonucleotides used in the DNA microarray” 

which exists in the initial submission, the reviewer did not know the meaning of ‘dynamic range’ 

and speculated that ‘dynamic range’ means fluorescence. 

Our response:  

In this resubmission, this sentence has been revised to ‘In addition, the set of octamers used 

in the DNA microarrays may not cover all possible binding site sequences (>8 nt) recovered in 

the genome from ChIP-seq…’. 

 

 

13. The reviewer said that we used terms that were not widely known nor defined (e.g. 

"homogeneous recognition motifs"), and called binding sites of the same length 'multiple 

sequence alignment'. 

Our response:  

1. In the resubmission, the term ‘homogeneous binding motifs’ has been revised to 

‘contiguous binding motifs’.  

2. The statement, ‘referring to binding sites of equal length as 'multiple sequence alignment'’, 

is wrong. In the initial submission, we did not refer to binding sites of equal length as 'multiple 

sequence alignment'; instead, we referred to a set of aligned binding sites as a multiple 

sequence alignment. A multiple sequence alignment (MSA) is a sequence alignment of three or 

more biological sequences, generally protein, DNA or RNA (14). Therefore, a set of aligned 



binding sites is a multiple sequence alignment. In the resubmission, the term 'multiple sequence 

alignment' no longer exists. 

 

 

14. About the sentence “The R_sequence value of a model is the mean of the R_i values of all 

the binding site sequences used to compute the model, and represents the average binding 

affinity.", the reviewer asked us how we computed the information content of a single binding 

site.  

Our response:  

In this resubmission, this sentence has been revised to ‘The individual information content (Ri) 

of a TF-bound sequence, which represents the affinity of the TF-DNA interaction, is the dot 

product between the binary matrix of the sequence and an iPWM of the TF.’ Therefore, this 

sentence indicates that the Ri value of a binding site sequence is calculated by computing the 

dot product between the sequence and an iPWM (12). 

 

 

15. About the sentence “[...] the weakest binding sites inferred from ChIP-seq are essentially 

noise [...].”, the reviewer asked us if weak binding sites are noise, and he did not know the 

criterion of calling weak binding sites noise. 

Our response:  

In this resubmission, this sentence has been rewritten: ‘This is necessary, as the sequences 

contained in the weakest ChIP-seq peaks may contribute noise that can obfuscate the detection 

of true binding motifs.’ 

 

 

16. About the sentence “The frequencies of binding sites appearing in a ChIP-seq dataset are 

linearly related to their binding energy (log2Kd), which is delineated by equation 3”, the reviewer 

said that the frequencies of binding sites should be linearly related to dissociation constants Kd. 

Our response:  

According to Equations 8 and 12, the frequencies of binding sites are neither linearly related 

to the binding energy (log2Kd) nor the dissociation constant Kd. 

In this resubmission, this sentence has been revised to ‘The frequencies of binding sites 

appearing in a ChIP-seq dataset are related to their binding energy (log2Kd)’, and appears in the 

Supplementary Methods file (Section 5.1, Page 6). 

  



17. The reviewer said that for the sentence "[TF] is negligible for most TFs.", there should be a 

discussion and citation. 

Our response:  

The discussion and citation have already been given in the response to the Comment 7, and 

also appear in the Supplementary Methods file (Section 5.1, Page 6) of this resubmission along 

with the complete derivation on the relationship between frequencies and dissociation constants 

of binding sites. 

 

 

Responses to the comments of the reviewer #2: 

1. The reviewer wanted us to compare Maskminent with other motif discovery algorithms in the 

literature (e.g. SeqGL). 

Our response:  

In this resubmission, the paragraph starting with ‘We also compared results produced by the 

Maskminent pipeline with…’ in the Discussion section compares the Maskminent pipeline with 

other motif discovery tools from two perspectives of revealing primary and cofactor binding 

motifs. MEME-ChIP (15) was primarily used in this comparison, because it was also extensively 

applied to top 500 peaks of a large number of ChIP-seq datasets in Wang et al (3). The detailed 

data are given in the Supplementary Table S7. Below we summarize these results. 

① The comparison between Maskminent and MEME-ChIP on the ability to reveal primary 

motifs: among the 98 sequence-specific TFs investigated by both tools, Maskminent and MEME 

discovered primary motifs for 80 (~81.6%) and 92 (~93.9%) TFs, respectively. 

② The comparison between Maskminent and MEME-ChIP on the ability to reveal cofactor 

motifs: the cofactor motifs Maskiment found but MEME-ChIP did not are primarily the SP and 

IRF families (for 42 and 8 primary TFs, respectively). This is because in the process of 

searching for a motif MEME-ChIP used background nucleotide frequencies which are computed 

from all the input DNA sequences by default. Thus if a true binding motif is similar to the 

background frequencies, it will fail to discover this motif, which explains why the GA-rich SP 

motif and IRF motif were often missed by MEME-ChIP. On the other hand, MEME revealed 

many more cofactor motifs than Maskminent, though using only top 500 peaks increases the 

likelihood of those cofactors appearing by chance. This is because MEME-ChIP was configured 

to report up to 5 motifs and the main goal of Maskminent is to discover primary motifs (i.e. if the 

initial iPWM derived from a dataset exhibits the primary motif, the masking and thresholding 

techniques will no longer be used). 

③ The comparison of five tools (Maskiment, MEME-ChIP, SeqGL (16), HOMER (17), gkm-

SVM (18)) on the ability to reveal binding motifs: These five tools were compared on 8 certain 

datasets from Setty et al. (16). In terms of the total number of cofactor motifs revealed, 

Maskminent is better than gkm-SVM. 

Additionally, one advantage of Maskminent over these other tools is that it does not require 

all the input DNA sequences have the same length. 



2. The reviewer wanted us to cite more papers that had been recently published and ensure that 

all the new TF interactions revealed by Maskminent indeed had not been reported in the 

literature. 

Our response:  

1. In this resubmission, the SeqGL paper (16) published in 2015 and Arvey et al. (5) 

published in 2012 is cited, other than Jolma et al. (2) published in 2015, Weirauch et al. (1) 

published in 2014 and Kheradpour et al. (4) published in 2014 that were already cited in the 

initial submission.  

2. In this resubmission, we thoroughly checked the literature to ensure that all the new TF 

interactions that the Maskminent pipeline revealed indeed have not previously been described. 

The Table 1 and all the relevant texts are revised accordingly. 

 

 

3. The reviewer told us that the notation 6<1,2>6 was not explained, and that we should add a 

supplementary figure that describes the Bipad algorithm. 

Our response:  

1. In this resubmission, a figure intuitively describing the working process of the Bipad 

algorithm at a high level and in-depth mathematical formalizations are given in the Chapter 1 of 

the Supplementary Methods file (Section 1, Page 2). 

2. In this resubmission, the notation 6<1,2>6 is explained by revising the last sentence of the 

legend of Figure 2 where it appears for the first time. This sentence has been revised to ‘The 

bipartite search patterns, which are denoted by l<a,b>r (l and r are the lengths of the left and 

right half sites respectively, a and b are the minimum and maximum spacer lengths 

respectively), are 6<0,5>6, 3<2,4>3, 3<2,4>3, 3<2,4>3, 6<1,2>6 and 6<1,2>6 from top to 

bottom, respectively.’ 

 

 

4. The reviewer asked us in Supplementary Figure S1 how the conditions (e.g. “if (M_j shows 

the primary binding motif)” and “if(M_j shows the binding motif of a cofactor)”) were evaluated 

and what δ means. He/she also suggested us to convert the pseudocode to a flowchart with an 

example. 

Our response:  

1. In this resubmission, the pseudocode describing the Maskminent pipeline in the 

Supplementary Figure S1 of the initial submission is replaced by a flowchart appearing in the 

Supplementary Methods file (Section 2.1, Page 3). This flowchart is also accompanied by an 

example. 

2. In this resubmission, δ no longer exists. 

3. In this flowchart of the resubmission, we determined if an iPWM shows the primary motif or 

a cofactor motif by comparing the sequence logo of this iPWM with the sequence logos of TF 

binding motifs generated by Wang et al. (3) and Weirauch et al. (1). 



5. The reviewer wanted us to show that the iPWMs can indeed be used to perform mutation 

analysis. 

Our response:  

In this resubmission, in order to demonstrate that the derived iPWMs can indeed be used to 

perform mutation analysis, we added another method evaluating the accuracy of these iPWMs. 

This method is to use these iPWMs to explain the effects of characterized SNPs on binding site 

strengths.  

Based on the change in the Ri value of the binding site, the effect of a SNP on the binding 

site strength can be predicted. For 153 SNPs of 29 TFs within TF binding sites, we compared 

the predictions of the iPWMs to the experimental observations measuring their effects 

The detailed data are included in the Supplementary Table S5. Below we summarize these 

results. 

For only 7 SNPs (~4.6%) of 3 TFs, the directions of changes in binding site strengths 

predicted by the iPWMs differ from those observed in experiments (e.g. the iPWM predicts that 

TF binding will be strengthened, but experiments observed that binding was weakened). For 16 

SNPs (~10.5%) of 10 TFs, the directions are concordant, but the extents differ (e.g. TF binding 

is predicted to only be weakened, but experiments observed that binding was completely 

abolished). For 130 SNPs (~85.0%) of 27 TFs, the predictions of the iPWMs and the 

experimental observations are completely concordant. 

 

 

6. The reviewer wanted us to use Maskminent to analyze a few datasets on which Arvey et al. 

mentioned that other motif discovery tools performed poorly. 

Our response:  

Arvey et al. (5) mentioned that MEME did not yield any significant motifs for >10% of the 

peaks in the GM12878 datasets of FOS, possibly due to additional sequence specificity 

provided by unknown cofactors or a higher false-positive rate in the GM12878 ChIP-seq 

experiments. On the IDR-thresholded dataset of FOS from the GM12878 cell line, the 

Maskminent pipeline revealed SP motif and NFY motif. The primary AP1 motif was not revealed. 

We used the bipartite iPWM of FOS derived from the MCF10A dataset treated with 1μm 

afimoxifene for 12 hours to scan this dataset. We found that AP1 binding sites also abound in 

this dataset, which implies that the reason why the primary AP1 motif was not revealed is that 

the AP1 motif is less conserved than the two cofactor motifs. The cobinding between FOS and 

the two cofactors (SP and NFY) was validated by the large proportion of peaks having short 

intersite distances (<20bp) (see the two graphs in Row 10 of the Supplementary Table S3). 

 

 

7. The reviewer wanted us to analyze if these novel motifs occur more frequently around DNase 

I hypersensitive sites and specific histone modifications. 

Our response:  



In order to investigate if the 6 novel motifs are enriched within DNaseI Hypersensitive sites 

and near H3K4 methylation and H3K27 acetylation histone modifications associated with open 

chromatin (19), we computed the proportions that the occurrences of these motifs lying within 

the 4 ENCODE tracks (DNaseI HS track, H3K4me1 track, H3K4me2 track, H3K4me3 track, 

H3K27ac track) from the respective cell lines account for all the occurrences in the genome. 

Specifically, we used the iPWMs of these novel motifs to scan the whole hg19 genome 

assembly. Because the NM1, NM2 and NM3 motifs were revealed in ChIP-seq datasets of more 

than one TF, we used the iPWMs of BAF155, NANOG and ESRRA showing these three motifs, 

respectively. Then, we intersected the resultant intervals with the 4 ENCODE tracks from the 

respective cell lines. The results are given in the following table. 

Novel 

motif 

ENCODE Track 

DNaseI HS H3K4me1 H3K4me2 H3K4me3 H3K27ac 

NM1 4.50% 17.63% 15.52% 16.23% 11.44% 

NM2 7.06% 33.63% 14.39% 9.61% 34.05% 

NM3 4.21% 21.19% 16.89% 13.75% 12.25% 

NM4 3.18% N/A* N/A* 1.04% 2.22% 

NM5 2.31% N/A* N/A* 1.21% N/A* 

NM6 6.16% 32.37% 13.58% 9.36% 34.10% 

N/A*: The track from the specific cell line is unavailable. 

These proportions (5%-35%) are consistent with previous reports of binding sites for other TFs 

(20). The proportions of the occurrences of the NM2 motif lying within the H3K4me1 and 

H3K27ac tracks are significantly higher than that within the H3K4me2 and H3K4me3 tracks. 

The same pattern also exists for the NM6 motif. This implies that these two novel motifs are 

more likely to be functional enhancer elements, based on the fact that H3K4me1 and H3K27ac 

are the predominant histone modifications deposited at nucleosomes flanking enhancer 

elements (21). In addition, the proportions of the occurrences of these two novel motifs lying 

within DNaseI hypersensitive sites are the highest among all the six motifs. 
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The second round of review: 

Responses to the comments of the reviewer #2: 

1. About the sentence "the ability of five tools (Maskiment, MEME-ChIP, SeqGL (118), HOMER 

(119), gkm-SVM (120)) to reveal binding motifs were compared on 8 datasets described by 

Setty et al.", the reviewer mentioned that Setty et al. used 105 datasets. So he/she asked us 

why only eight datasets were selected and how they were selected. He/she wanted us to 

perform a more extensive comparison between Maskminent and other motif discovery tools. 

Our response:  

In the last submission, to form a comparison between the five tools we chose the eight ChIP-

seq datasets included in Table S4 of Setty et al. (1), because we obtained all the binding motifs 

that HOMER and gkm-SVM revealed on only these eight datasets. 

Sheet 1, Sheet 2 and Sheet 3 of Supplementary Table S8 in the last submission have been 

respectively renamed to Sheet ‘Primary(Maskminent&MEME-ChIP)’, Sheet 

‘Cofactor(Maskminent&MEME-ChIP)’, and Sheet ‘All binding motifs’ in this submission in order 

to let the names of these sheets more effectively describe the contents. 

In this submission, we added all the binding motifs that Maskminent, SeqGL (1) and MEME-

ChIP (2, 3) revealed on the 105 ChIP-seq datasets analyzed by Setty et al. to Sheet ‘All binding 

motifs’ of Supplementary Table S8. 

To more directly compare the ability of Maskminent, MEME-ChIP, SeqGL and HOMER (4) to 

reveal primary binding motifs, in Supplementary Table S8 we added the Sheet ‘Primary(Four 

tools) . This sheet indicates whether each of the four tools revealed the primary motif on each of 

59 datasets that belong to sequence-specific TFs among the 105 datasets and were analyzed 

by the four tools. The results of SeqGL and HOMER were obtained from Table S2 of Setty et al. 

and the webpage ‘http://cbio.mskcc.org/public/Leslie/SeqGL/chip_results/index.html’. The 

results of MEME-ChIP were obtained from the Factorbook website created by Wang et al. (3). 

The numbers of datasets on which Maskminent, MEME-ChIP, SeqGL and HOMER revealed 

primary motifs are 45, 51, 49 and 47, respectively. 

Furthermore, from Sheet ‘All binding motifs’ of Supplementary Table S8 we draw the 

following conclusions about comparing the ability of Maskminent and SeqGL to reveal cofactor 

motifs on the 105 datasets. The cofactor motifs that Maskminent discovered that SeqGL failed 

to discover primarily comprise the SP family, most likely because the SP motif is similar in 

nucleotide composition to the background sequences used by SeqGL. The detailed results are 

given in the newly added Sheet ‘Cofactor(Maskminent&SeqGL)’ of Supplementary Table S8. On 

the other hand, SeqGL revealed many more cofactor motifs than Maskminent. This is because 

SeqGL discriminatively reports multiple motifs from each dataset, whereas the main objective of 

Maskminent was originally to derive primary motifs. 



In the main text, the above discussion is also included in the paragraph starting with ‘We also 

compared results…’ in the Discussion section. 

 

 

2. The reviewer wanted us to perform an analysis computing the precision and recall. 

Our response:  

① An approach to addressing this issue is to determine false positive detection rates in 

sequences that are not expected to contain binding sites (Ri ≤ 0). We determined the null Ri 

distribution of binding sites for each TF whose primary binding motif was revealed, using a 

similar method as the one used to determine the null Ri distributions of splice donor and 

acceptor sites in Rogan et al. (5).  

The distribution of Ri values of natural binding sites is approximately Gaussian with Rsequence 

being the mean (5, 6). For each TF, we generated a random 10,000 nucleotide sequence that 

maintains the same mono- and dinucleotide composition as one of its ChIP-seq datasets. Using 

the iPWM derived from this dataset, the Ri value of each fragment that is of the same length as 

the iPWM in the random sequence was computed. The null Ri distribution, which is also 

approximately Gaussian, was formed by all these Ri values. We also computed the probability 

of observing a binding site with Ri>0 using the null distribution. 

The means of all the 93 null distributions range from -55.91 to -12.28 bits with the standard 

variations from 7.45 to 22.54 bits. The probabilities range and from 1.82E-4 to 6.35E-2.  

The detailed data are given in Sheet ‘iPWMs’ of Supplementary Table S1, and the relevant 

description was added to the paragraph starting with ‘For each TF ChIP-seq dataset with a 

derived primary motif…’ in the Results section of the main text. 

② Regarding the thresholding technique used in the Maskminent pipeline, we also 

investigated whether the distribution of Ri values of binding sites in the top peaks used to derive 

the primary motif is significantly different from those sites present in the excluded bottom peaks. 

Specifically, we used the iPWM exhibiting the primary motif to scan each peak in the ChIP-

seq dataset, and took the greatest Ri value in each peak. Then, we obtained two sets of Ri 

values for top peaks and for bottom peaks. The following figure shows the distributions of Ri 

values for the top 64,500 peaks of the RUNX3 dataset versus for the 3,465 bottom peaks. 



 

The distribution for the bottom peaks completely lies under that for the top peaks, which 

implies that they are similar. The bottom weak peaks do not necessarily contain weaker sites or 

are missing binding sites. However, when including these bottom peaks, we obtained a cofactor 

motif (i.e. IRF motif) instead of the primary motif (i.e. RUNX motif). This implies that overall 

distribution the binding sites in the top peaks have higher conservation levels (i.e. information 

contents). Thresholding the dataset is required in order to ensure that the iPWM for the primary 

motif consists of binding sites from as many peaks as possible, while preventing the cofactor 

motif from dominating the objective function used in Maskminent.  

In the main text, these conclusions were added to the paragraph starting with ‘In the 

Maskminent pipeline, the weak peaks…’ in the Discussion section, and the above analysis on 

the RUNX3 dataset (including the figure) was added to Section 1.2.6 of Supplementary Methods. 

 

 

3. The reviewer thought that Maskminent used a uniform background nucleotide distribution, 

which he/she thought might not be correct. So he/she wanted us to talk about it and describe 

how the use can specify a background distribution or some negative control sequences in 

Maskminent. 

Our response:  

① During the process of performing motif discovery, the Maskminent algorithm does not 

assume any background nucleotide composition or use any negative controls, because it does 

not require these concepts.  

The Maskminent algorithm does not use a discriminative approach to distinguish binding 

sites from background sequences. Instead, as described in the Supplementary Methods, 

Maskminent uses an entropy minimization-based Monte Carlo framework to seek the multiple 



alignment with the minimum entropy in the multiple alignment search space formed by all the 

peaks of a ChIP-seq dataset. Its objective function is defined as follows: 

          
    

              
 

      
   

  

   

 

       

                     

where     is the optimal multiple alignment with the minimum entropy,   is the multiple 

alignment search space,    is one bipartite multiple alignment in  ,    is the length of the left or 

right half site in   ,        is the frequency of base   at position   in   . 

Therefore, given any set of input DNA sequences the user provides, the Maskminent 

algorithm will always converge to the optimal multiple alignment with the lowest entropy, which 

is independent of the nucleotide composition of the input sequences. Therefore, the user does 

not need to provide a background nucleotide composition or a set of negative controls when 

running Maskminent on a set of input sequences (e.g. a ChIP-seq dataset). 

In the main text, the above discussion was summarized in the sentence starting with ‘in 

contrast, Maskminent does not use…’ of the paragraph starting with ‘We also compared 

results…’ in the Discussion section. 

② During the process of deriving an iPWM from the optimal multiple alignment, when 

computing the information content          of base   at position  , using a uniform background 

nucleotide composition is correct; in fact, it is more appropriate than using a non-uniform 

background composition. 

         measures the decrease in the surprisal of   at   before the TF specifically binds to 

binding sites and after the TF specifically binds (6, 7). The surprisal of   at   after the TF binds is 

computed from the following Equation 2: 

                                                  

where       is the frequency of base   at position   in the multiple alignment. 

If using a uniform composition (i.e. the probability of each base appearing is 0.25), then the 

surprisal of   at   before the TF binds is 2. Thus          is computed from the Equation 3: 

                             

If using a non-uniform composition (i.e. the actual genomic composition), then the surprisal of 

  before the TF binds is computed from the following Equation 4: 

                                              

where      is the probability of base   appearing in the whole genome. Thus          is 

computed from the Equation 5: 

                                   

Equation 3 describes the molecular machine state in which contact between the TF and 

binding site is not made before binding (7). Before the TF physically contacts the nucleotide 



bases of a binding site, the composition of the genome should not matter (i.e. the genomic 

composition is not relevant to the physical contacts between the TF and the nucleic acid bases) 

(6). On the other hand, the Equation 5 takes into account the genomic composition (i.e. 

cancelling the ‘background' around a binding site due to genomic composition skew), but this is 

dangerous because it is not known what causes the skew and whether this skew impacts the 

binding event. For example, it could be caused by a nucleosome registration pattern throughout 

in the genome and therefore real information is there which is relevant to TF accessibility. This 

leaves us with the difficult or unresolvable technical problem to separate and identify the 

information of other binding sites in such genomes (7). Therefore, using a uniform background 

composition is more appropriate because it is not affected by confounding genomic structural 

bias will unknown or ill-defined molecular bases. 

In the main text, the above discussion was summarized in the sentence starting with ‘This 

approach is appropriate than …’ of the second paragraph in the Introduction section.    

 

 

4. The reviewer asked us what the symbols A, B, and C mean in the flowchart of the 

Maskminent pipeline. 

Our response:  

In the last submission, the three symbols A, B and C were variables that were declared in 

order to describe the thresholding process in the flowchart. The initial range containing the 

maximum number of top peaks that can generate the primary/cofactor motif is from 200 to the 

number of all peaks (i.e.   in the flowchart). This range is narrowed down by an iterative half-

interval search until the number of peaks contained in the range does not exceed 500. The 

three symbols A, B and C were respectively the smaller bound, the greater bound, and the 

median (rounding to the nearest multiple of 500) of the current range during the half-interval 

search. 

In this submission, the description about the thresholding process is completely rewritten, so 

the three symbols A, B and C have been removed. Below the new description in the main text is 

given. 

‘To eliminate noisy patterns that suppress the expected TF binding motifs due to ChIP-seq 

peaks with low signal strengths (i.e. read counts), the dataset is truncated based on signal 

strengths as follows (Figure 1). First, all the peaks are ranked in the descending order of 

strengths, and we select the top 200 peaks. If the iPWM derived from the top 200 peaks exhibits 

the primary/cofactor motif, then the minimum threshold peak strength is contained in the range 

from the strength of the 200th peak (i.e. the initial value of  ) to the strength of the last peak (i.e. 

the initial value of  ). Then, an iterative half-interval search narrows down this range until the 



number of peaks contained in the range does not exceed 500. During this half-interval search,   

is the current threshold above which the top peaks can produce the primary/cofactor motif. 

Therefore, the approximately minimum threshold that we finally obtain is   of the final range, 

and the peak set above this threshold contains the maximum number of top peaks that can 

produce the primary/cofactor motif.’ 

 

‘Figure 1. One iteration of the half-interval search used to refine the threshold peak strength. 

All peaks in the dataset are sorted in the descending order of signal strengths.   are the smaller 

bound of the current range containing the minimum threshold that can generate the 

primary/cofactor motif, and   is the greater bound (i.e. the current threshold).   and   are 

respectively initialized to the strength of the 200th peak and the strength of the last peak.   is 

the strength of the peak at the mean (rounding to the nearest multiple of 500) of the number of 

top peaks above   and the number of top peaks above  .      ,      ,       are 

respectively the iPWMs derived from the top peaks above  ,  ,  .                is the 

Euclidean distance between       and      , and                is the Euclidean 

distance between       and      . If                is greater than               , 

      exhibits the noise motif and the minimum threshold is contained in the subrange from   

to  ; if                is smaller than               ,       exhibits the 

primary/cofactor motif and the minimum threshold is contained in the subrange from   to  . 

When the number of peaks contained in the range does not exceed 500, this half-interval 

search is stopped. The approximately minimum threshold that is returned is   of the final range.’ 

In the main text, the above figure was added as Figure 1, and the new description about the 

thresholding process is included in the paragraph starting with ‘To eliminate noisy patterns 

that…’ of the Materials and Methods section and the legend of Figure 1.  

In Supplementary Methods, the flowchart was revised accordingly, and the meanings of all 

symbols appearing in the flowchart were also described in the paragraph starting with ‘*’ 

immediately after the flowchart. The example after the flowchart was also adjusted accordingly. 

  



Responses to the comments of the reviewer #3: 

1. The reviewer wanted us to discuss which binding sites Maskminent failed to detect. 

Our response:  

In the first method to evaluate the accuracy of our iPWMs, all 803 experimentally proven 

binding sites for 93 TFs whose primary motifs were discovered were successfully detected by 

scanning for elements with positive Ri values (Supplementary Table S5). 

Not only are the locations of binding sites predicted by the iPWMs completely concordant 

with those of the true sites determined by experiments, but also the strengths (i.e. Ri values) 

predicted by the iPWMs are concordant with the experimentally observed strengths. Below, 

eight typical examples where binding affinity measurements were available are presented. 

These examples have been extracted from Columns ‘Specific evidences’ and ‘Predicted binding 

sites’ of Supplementary Table S5. In the main text, these conclusions and examples were also 

summarized in the two sentences starting with ‘There was complete concordance…’ and ‘For 

example, an EMSA analysis…’ in the ‘Detection of true binding sites with iPWMs’ subsection of 

the Results section. 

1. Row 206: Dowdy et al. (8) proved that the two blue parts of the sequence 5'-

GCTGCTCGGCGCACGGAAGATCCTGTCCCCG-3' in the human SMAD7 promoter are two 

binding sites of ETV1 using EMSA, and the ‘GGAA’ site is stronger than the ‘ATCC’ site. In this 

sequence our iPWM detected two binding sites (i.e. 5'-GCACGGAAGATC-3' with Ri = 5.30 bits, 

5'-GACAGGATCTTC-3' with Ri = 3.73 bits) which respectively contain the two core nucleotide 

sequences (blue font). And the Ri value (5.30 bits) of the ‘GGAA’ site is 1.57 bits greater than 

the Ri value (3.73 bits) of the ‘ATCC’ site, which means that the ‘GGAA’ site is 21.57 (or 2.97) fold 

stronger than the ‘ATCC’ site. 

2. Row 294: using EMSA Meirhaeghe et al. (9) proved that GATA2 binds weakly to the 

sequence 5'-TAGCACTTATCGTTTAAACA-3' in the human PPARG promoter. The iPWM 

detected the binding site (5'-ACGATAAGT-3' with Ri = 4.00 bits) whose Ri value is smaller than 

the Rsequence value (10.28 bits) of the iPWM, which means that this is a weak binding site. 

3. Row 585: the two colored parts of the sequence 5'-

TTGGGGAGTCCCAGCCTTGGGGATTCCCCAA-3' in the human HLA-A gene were proven to 

be two binding sites of NFKB by EMSA in Gobin et al. (10), and the blue site is stronger than the 

green one. These two binding sites were detected by the GM19099 iPWM (5'-GGGGATTCCC-

3' with Ri = 13.70 bits, 5'-GGGGAGTCCC-3' with Ri = 10.02 bits), which means that the blue site 

is 23.68 (or 12.82) fold stronger than the green one. 

4. Row 647 and 648: Kozmik et al. (11) proved that in the human CD19 promoter the 

sequence 5'-CCCCCGCAGACACCCATGGTTGAGTGCCCTCCA-GGCCCCTGCCTG-3' 

contains a strong binding site of PAX5, and another sequence 5'-CCTG-



GAGAATGGGGCCTGAGGCGTGACCACCGCCTTCCTCTCTGG-3' contains a stronger binding 

site using EMSA and competition experiments. In the first sequence the iPWM detected the 

binding site (5'-TGGGGCCTGAGGCGTGAC-3' with Ri = 10.27 bits) whose Ri value exceeds the 

Rsequence value (9.53 bits) of the iPWM, which means that this site is strong; in the second 

sequence the iPWM detected the binding site with a greater Ri value (5'-AGGGCACTCAACCA-

TGGG-3' with Ri = 12.48 bits), which means that this site is 22.21 (or 4.63) fold stronger than the 

one in the first sequence. 

5. Row 745, 746 and 747: using EMSA and competition experiments Talianidis et al. (12) 

proved that in the human APOC3 promoter the binding site of SP1 in the sequence 5'-

CACACAGGGTGGGGGCGGGTGGGG-3' is weaker than the two sites in the two sequences 5'-

GCCTGGTGGAGGGAGGGGCAA-3'  and 5'-GACCAGCTCCTCCCC-CAGGGGA-3’. The Ri 

value (8.78 bits) of the binding site 5'-ACAGGGTGGGGG-3' detected by the iPWM in the first 

sequence is smaller than the Ri values (13.83 bits, 13.39 bits) of the two sites 5'-

GGAGGGAGGGGC-3' and 5'-TGGGGGAGGAGC-3' detected in the latter two sequences, 

which means that the site in the first sequence is 25.05 (or 33.13) and 24.61 (or 24.42) folds 

weaker than the ones in the latter two sequences, respectively. 

6. Row 773, 774 and 775: using EMSA, competition experiments and recombinant human 

SRF proteins, Miano et al. (13) proved that in the murine Cnn1 promoter the two sequences 5'-

ACAGGATTGCCTTAGTTGGGATGAGGTA-3' and 5'-

AGCTAAGACCCAAGTTTGGCTTGGAGGG-3' contain two weaker binding sites of SRF than 

the sequence 5'-GCCGCCGCGCCTTATAAGGCGGCCTTGG-3'. In the first two sequences the 

iPWM detects two binding sites (5'-CCAACTAAGG-3' with Ri = 10.87 bits, 5'-CCAAACTTGG-3' 

with Ri = 8.30 bits); in the last sequence it detects the binding site (5'-CCTTATAAGG -3' with Ri 

= 12.68 bits), which mean that this site is 21.81 (or 3.51) and 24.38 (or 20.82) fold stronger than the 

two sites in the first two sequences, respectively.  

7. Row 781 and 782: using EMSA and antibody supershift Kordula et al. (14) proved that in 

the human SERPINA3 promoter the sequence 5'-CCCGTATT-ACCAGAAATTATC-3' contains a 

stronger binding site of STAT1 than the sequence 5'-TTCCA-GTCCGAGAACAGAA-3'. The 

bipartite iPWM detected the binding site (5'-TTCTGGTAA-3' with Ri = 9.02 bits) in the first 

sequence. This site is 22.13 (or 4.38) fold stronger than the one (5'-TTCTCGGA-3' with Ri = 6.89 

bits) detected in the second sequence.  

8. Row 784 and 785: using EMSA and microaffinity DNA binding assays Sherman et al. (15) 

proved that in the human AGT promoter the binding site of STAT1 in the sequence 5'-

CTCCCGTTTCTGGGAACCTTGGC-3' is stronger than the one in the sequence 5'-

TGCAAACTTCGGTAAATGTGTAA-3'. In the first sequence the bipartite iPWM detected the 

binding site (5'-TTCTGGGAA-3' with Ri = 11.24 bits); in the second sequence it detected the 



binding site (5'- TTCGGTAA-3' with Ri = 8.89 bits), which means that this site is 22.35 (or 5.10) 

fold weaker than the one in the first sequence. 

 

 

2. The reviewer said that the mathematical expression makes simple concepts harder to 

understand. 

Our response:  

In the last submission, the manuscript itself does not contain mathematical formalism and 

language, but Supplementary Methods do, which was requested by the corresponding editor. 

Where possible, we have cited appropriate references to support many of these concepts, 

which don’t need to be repeated in the manuscript or simplified. It would be helpful for the 

reviewer to indicate which concepts he/she is referring to, and why they should not be described. 

 

 

3. The reviewer wanted us to further explain how the optimal number of top peaks was 

determined. 

Our response:  

In this submission, the description about the thresholding process is completely rewritten. 

Below the new description in the main text is given. 

‘To eliminate noisy patterns that suppress the expected TF binding motifs due to ChIP-seq 

peaks with low signal strengths (i.e. read counts), the dataset is truncated based on signal 

strengths as follows (Figure 1). First, all the peaks are ranked in the descending order of 

strengths, and we select the top 200 peaks. If the iPWM derived from the top 200 peaks exhibits 

the primary/cofactor motif, then the minimum threshold peak strength is contained in the range 

from the strength of the 200th peak (i.e. the initial value of  ) to the strength of the last peak (i.e. 

the initial value of  ). Then, an iterative half-interval search narrows down this range until the 

number of peaks contained in the range does not exceed 500. During this half-interval search,   

is the current threshold above which the top peaks can produce the primary/cofactor motif. 

Therefore, the approximately minimum threshold that we finally obtain is   of the final range, 

and the peak set above this threshold contains the maximum number of top peaks that can 

produce the primary/cofactor motif.’ 



 

‘Figure 1. One iteration of the half-interval search used to refine the threshold peak strength. 

All peaks in the dataset are sorted in the descending order of signal strengths.   are the smaller 

bound of the current range containing the minimum threshold that can generate the 

primary/cofactor motif, and   is the greater bound (i.e. the current threshold).   and   are 

respectively initialized to the strength of the 200th peak and the strength of the last peak.   is 

the strength of the peak at the mean (rounding to the nearest multiple of 500) of the number of 

top peaks above   and the number of top peaks above  .      ,      ,       are 

respectively the iPWMs derived from the top peaks above  ,  ,  .                is the 

Euclidean distance between       and      , and                is the Euclidean 

distance between       and      . If                is greater than               , 

      exhibits the noise motif and the minimum threshold is contained in the subrange from   

to  ; if                is smaller than               ,       exhibits the 

primary/cofactor motif and the minimum threshold is contained in the subrange from   to  . 

When the number of peaks contained in the range does not exceed 500, this half-interval 

search is stopped. The approximately minimum threshold that is returned is   of the final range.’ 

In the main text, the above figure was added as Figure 1, and the new description about the 

thresholding process is included in the paragraph starting with ‘To eliminate noisy patterns 

that…’ of the Materials and Methods section and the legend of Figure 1.  

In Supplementary Methods, the flowchart was revised accordingly, and the meanings of all 

symbols appearing in the flowchart were also described in the paragraph starting with ‘*’ 

immediately after the flowchart. The example after the flowchart was also adjusted accordingly. 

 

 

4. The reviewer said that the information content of a multiple alignment is the sum of the 

entropies of all individual positions under the assumption that individual positions are 

independent of each other. 

Our response:  



① Under the assumption that all the positions in a binding site are independent from each 

other, the information content of a contiguous multiple alignment is the sum of the information 

contents of all the individual positions. The entropy of a multiple alignment is the sum of the 

entropies of all the individual positions. The information content              and the entropy 

     of a position   satisfy the following equation 6 (16). 

                           

     is computed from the following equation 7 (16). 

                       

   

                               

In the Equation 6, the component ‘2’ is the maximum entropy that   can have (i.e. the four 

bases are equally likely to occur) before the TF specifically binds. Therefore, the information 

content of a position measures the decrease in the entropy of this position after binding. 

② To determine the extent of the interdependence between individual positions in binding 

sites, we computed the total mutual information for one iPWM of each TF whose primary motif 

was discovered. For contiguous iPWMs, this is done by summing the pairwise mutual 

information at each position; for bipartite iPWMs, this is done by summing the pairwise mutual 

information at each position in either half site, then summing the mutual information of the two 

half sites.  

The mutual information    for a pair of positions    and   , which is defined by the following 

Equation 8, measures the dependence between    and   . 

                  
        

           
                                               

where    is the base appearing at   ,    is the base appearing at   ,       is the probability of 

   appearing at   ,       is the probability of    appearing at   ,          is the joint probability 

of    and    appearing at    and    simultaneously. 

Furthermore, for each iPWM, we computed the percentage of its total mutual information 

relative to its average information (i.e. the           value). This percentage measures the 

relative importance of the interdependence across all the individual positions compared to the 

interaction between the protein and each individual position in a binding event. 

For 83 TFs (~89.2%), <10% of the information present in the iPWM is dependent, and for 62 

TFs (~66.7%), <5% is dependent. Neglecting the interactions between positions introduces a 

minimal error into the calculation of Ri values of binding sites, and would be expected to have 

little impact on assessment of the mutations in these sequences. 

In the main text, the above discussion was added to the paragraph starting with ‘Similarly, 

the independence of contributions of each position…’ of the Results section. The detailed data 

were added to Sheet ‘iPWMs’ of Supplementary Table S1. 

  



5. The reviewer said that the relationship between Ri values and binding energy should be 

described in the main text. 

Our response:  

To follow the corresponding editor’s request to make the manuscript more accessible to 

biologists, in the last submission we moved the complete formulation delineating the relationship 

between Ri values and binding energy to Supplementary Methods. Therefore, in this submission, 

we revised the paragraph starting with ‘To distinguish true binding motifs…’ in the Methods 

section to summarize this relationship as follows: 

‘To distinguish true binding motifs from noise motifs, we delineated the relationship between 

Ri values of binding sites discovered by the iPWM and their corresponding binding energy (i.e. 

higher Ri values have lower binding energies) (Supplementary Methods). Primary/cofactor 

motifs are expected to demonstrate this relationship, whereas noise motifs are not; that is, for 

primary/cofactor motifs, the linear regression fit between Ri values and binding energy are 

expected to have slopes well below 0 which is the expected slope for noise motifs. After 

applying F-tests to evaluate this relationship, F values for the two categories of motifs were 

compared using a Mann-Whitney U test.’ 

 

 

6. The reviewer asked us what the criterion of considering weak binding sites as noise was and 

how it was found. 

Our response:  

① In this submission, the sentence ‘…enables new motif discovery by recursively masking 

sequences detected by previous analyses of a ChIP-seq dataset while defining thresholds for 

inclusion of the maximum number of top peaks to eliminate weak binding sites contributing 

noise (Supplementary Methods).’ is revised to ‘…enables new motif discovery by recursively 

masking sequences detected by previous analyses of a ChIP-seq dataset while defining 

thresholds for inclusion of the maximum number of top peaks to eliminate peaks with lower 

signal intensities whose inclusion can result in emergence of noise over primary or cofactor 

motifs (Supplementary Methods).’ 

In this submission, the description about the thresholding process is completely rewritten. 

The new description was given above in the response to Comment 1 of Referee 3.  

② As demonstrated in Supplementary Methods, Ri values are related to binding energy 

(log2Kd) (i.e. higher Ri values have lower binding energies). Therefore, when plotting log2Kd 

versus Ri for a primary/cofactor motif, the slope of the linear regression fit between them is 

expected to be well below 0. On the other hand, for a noise motif, ideally the slope is expected 

to be approximately 0 (i.e. the linear regression fit is parallel with the X axis). 



The following figure shows the probability density distributions of the slopes for 85 primary 

motifs, 85 cofactor motifs and 85 noise motifs that were randomly selected. The slopes of all 

primary motifs are smaller than -1.1 except that one is between -1 and -1.1, which also holds 

true for cofactor motifs; whereas the slopes of all cofactor motifs are greater than -1 except that 

one is between -1 and -1.1. This implies that the slope of the linear regression fit between log2Kd 

and Ri can be used to distinguish primary/cofactor motifs from noise motifs. 

 

The above discussion was also added to Section 2.3 of Supplementary Methods. 
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The third round of review: 

Responses to the comments of the reviewer #2: 

1. The reviewer objected to the statement that taking into consideration the background 

nucleotide distribution used as a negative control is "dangerous". He/she wanted us to state that 

the accuracy of the iPWMs was influenced by only using ChIP-seq sequences containing 

binding sites. He/she wanted us to generate a null Ri distribution of binding sites for each ChIP-

seq dataset as a negative control. 

Our response:  

We regret using the term “dangerous”, however the citations (10,11) show that the likelihood 

approach can violate the triangle inequality and can result in >2 bits per nucleotide position, 

which is unjustified in natural genomes under selection.  

We did find that the model’s precision can be affected by use of relative entropy. For 

example, using a likelihood based method, MEME ChIP fails to detect GC-rich motifs like the Sp 

family, most likely because the composition is similar to the motif itself.   

In our view, the fundamental question is whether the assumption of a uniform background 

actually affects our results. We have therefore comprehensively determined the probabilities for 

all of the ChIP-seq datasets, as the reviewer suggested. In the last submission, for one ChIP-

seq dataset of each TF whose primary motif was discovered (n=93), we determined the null Ri 

distribution of binding sites. In this submission, for each ChIP-seq dataset with a derived primary 

motif (n=367), we created a random 10,000 nucleotide sequence that maintains the same 

mono- and dinucleotide composition, then determined the null Ri distribution.  

The means of all null distributions range from -97.5 to -12.3 bits with standard deviations 

from 6.9 to 22.5 bits. The probabilities of observing a potentially functional binding site, i.e. with 

Ri>0, in these sequences range from 1.2E-7 to 0.06. Therefore, for every ChIP-seq dataset from 

which we derived a primary motif, the false positive detection rate is very low. For all practical 

purposes, the theoretical argument raised by the reviewer will be of little consequence in 

our proposed approach. 

In the main text, the paragraph starting with ‘For each TF ChIP-seq dataset with a derived 

primary motif, …’ in the Results section was revised accordingly. The detailed data were also 

added to Column ‘Binding site null distribution’ of Sheet ‘iPWMs’ of Supplementary Table S1. 

 


