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We present a prototype software system with sufficient capacity and speed to estimate radiation exposures in a mass casualty
event by counting dicentric chromosomes (DCs) in metaphase cells from many individuals. Top-ranked metaphase cell images
are segmented by classifying and defining chromosomes with an active contour gradient vector field (GVF) and by determining
centromere locations along the centreline. The centreline is extracted by discrete curve evolution (DCE) skeleton branch pruning
and curve interpolation. Centromere detection minimises the global width and DAPI-staining intensity profiles along the centre-
line. A second centromere is identified by reapplying this procedure after masking the first. Dicentrics can be identified from fea-
tures that capture width and intensity profile characteristics as well as local shape features of the object contour at candidate
pixel locations. The correct location of the centromere is also refined in chromosomes with sister chromatid separation. The
overall algorithm has both high sensitivity (85 %) and specificity (94 %). Results are independent of the shape and structure of
chromosomes in different cells, or the laboratory preparation protocol followed. The prototype software was recoded in C11/
OpenCV; image processing was accelerated by data and task parallelisation with Message Passaging Interface and Intel
Threading Building Blocks and an asynchronous non-blocking I/O strategy. Relative to a serial process, metaphase ranking,
GVF and DCE are, respectively, 100 and 300-fold faster on an 8-core desktop and 64-core cluster computers. The software was
then ported to a 1024-core supercomputer, which processed 200 metaphase images each from 1025 specimens in 1.4 h.

INTRODUCTION

Cytogenetic biodosimetry has been validated for
accurate estimation of radiation exposures(1). It
involves determining the actual frequency of dicentric
chromosomes (DCs) in a set of metaphase cells and
compares these with established standards with
known exposures to compute exposure. DC analysis
presents a number of bottlenecks in processing patient
samples and interpreting results that impede process-
ing the large volumes of samples expected in the event
of a mass casualty(2). Metaphase chromosomes from
thousands of patients need to be analysed in a short
assessment and treatment window. Results are needed
quickly to assess large numbers of exposed, suspected
and worried individuals.

Automating detection of normal and aberrant
chromosome identification presents a number of
unique challenges(3). Cytogenetic biodosimetry studies
based on DCs are labour intensive for large numbers
of patient samples and require special expertise.
Microscope images of metaphase chromosomes are
variable in morphology, and different laboratories use
different preparative methods resulting in their incon-
sistent appearance. Overlapping/touching chromo-
somes confound detection of DC. Sister chromatid
separation present in some preparations affects the ac-
curacy of image analysis. Finally, DCs are much rarer
than normal chromosomes. The identification of DCs

thus requires the development of rapid and accurate
image-processing techniques for detecting these abnor-
malities regardless of differences in morphology from
different sources.

There are several steps in cytogenetic biodosimetry
processes (in the cytogenetic laboratory and in the
analysis of laboratory-derived data), which limit
the rate at which patient samples can be processed.
The present study describes the current state of our
efforts to accelerate the interpretation of cytogenetic
image data. Our previous work has involved develop-
ment, implementation and testing of novel image seg-
mentation algorithms used in different aspects of
automated dicentric analysis(4, 5). Here, we integrate
these different components into prototype software to
identify and count DCs present in sets of images from
DAPI-stained metaphase cells previously obtained
from irradiated blood from one or more individuals.

Both the traditional dicentric chromosome analysis
(DCA) undertaken by cytogenetic experts in reference
laboratories and the automated Desktop version that
we developed (ADCI Desktop) are challenged to
process thousands of samples within a clinically rele-
vant timeframe (i.e. hours to days). For this reason,
dedicated, accurate, and rapid image-processing pro-
cedures are required to recognise the key morphologic-
al features in chromosomes that are diagnostic for
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DCs(4, 5). Furthermore, several of the system modules
require considerable time to perform the computa-
tions necessary to extract these features, in part,
because of the highly variable morphology of chro-
mosomes. It is also difficult to find faster algorithms
with the requisite accuracy to produce useful mea-
surements of radiation exposure based on DCA. As
parallel computing hardware such as multicore pro-
cessors and computing clusters has become wide-
spread, a feasible approach to accelerate ADCI is by
parallelisation of iterative elements in existing algo-
rithms. The need to handle thousands of samples
within hours motivated the development of integrated
software (ADCI Cluster) that exploits many proces-
sors in a high-performance computing environment
to efficiently accelerate DCA. We developed a set of
strategies to accelerate both ADCI Desktop and
ADCI Cluster from different perspectives.

METHODS

Image segmentation procedures

A set of algorithms was developed in MATLAB to
automatically and accurately locate centromeres(4, 5).
Briefly, graphical and cytogenetic features were
extracted from images and used to construct a classifi-
cation system to select the optimal images(6, 7). Using
a training set previously categorised by cytogeneticists,
metaphase cells are classified as either well separated
(nice), having a high level of overlapped chromosomes
or overspread. Objects in images below or exceeding
the size of chromosomes are masked. Metaphases are
classified within the sample into categories and ranked
with each category. After discarding overspread meta-
phase cells with an incomplete complement of chromo-
somes, nice or overlapped metaphases are ranked in
decreasing order of their scores.

The chromosome classification module determines
whether the input “blob” is a single chromosome or a
chromosomal cluster with two or more chromosomes
in overlap. A variation of the algorithm proposed by
Rizvandi et al.(8) generates and prunes a coarse centre-
line for an input blob, and counts the number of con-
joined parts of the centreline. If more than one
conjoined part is found, the blob is a cluster of multiple
chromosomes. Clusters of multiple chromosomes can
produce false-positive DC assignments. A procedure
for separating touching and overlapping chromosomes
is being implemented(8); however, at present, ADCI
selects only well separated, single chromosomes for
further processing.

Gradient vector flow (GVF) contour extraction is
used to produce a descriptive outline of the input
chromosome. The GVF active contour is an energy
minimisation function based on the edge map of the
chromosome object(9, 10). Active contours (or snakes,
in computer vision) are curves that can move under

the effect of internal energy from the shape of the
curve itself and the effect of external energy from the
pixel data in the image. For chromosome boundary
determination, the initial curve for GVF snake can be
flexible. The GVF snake encourages convergence to
boundaries with concave morphologies, which is very
common in chromosome contours.

A linear approximation of the path of each chromo-
some is obtained from a one-pixel wide centreline that
traces the length. Discrete curve evolution (DCE) is
used, a minimum polygon is obtained in the DCE
module for long chromosomes, which are then pruned.
Centrelines of short chromosomes are obtained by
medial axis thinning(5). A centreline consisting of dis-
crete or continuous points is obtained for every
chromosome. In order to get a curve that exactly repre-
sents the chromosome centreline, cubic spline interpol-
ation is applied to both axes to connect these points.
The centreline obtained after interpolation contains a
long stem and two short twig branches. The shortest
twig is pruned to obtain the resultant centreline span-
ning the length of the chromosome.

To detect centromeres, the current system takes a set
of lateral projections orthogonal to the centreline to
generate a trellis-like structure that samples the width
and staining intensity of the chromosome at regular
intervals along its length. Intensity information is
weighted based on a Gaussian distribution; and the
width profile is obtained from the previous GVF snake
result. These profiles are combined and the global
minimum is obtained as the first centromere position.
This location is masked and the process is repeated to
obtain the position of the second centromere, provided
that a second global minimum is present on the same
chromosome.

Software integration

The algorithm prototypes coded and tested with
MATLAB have been converted to an equivalent
version of ADCI written in Cþþ using the QT and
OpenCV set of image-processing libraries. MATLAB
was not available for all hardware compute clusters on
which ADCI was implemented, such as for the IBM
BG/Q and the Symmetric Computing platforms.
Developing software in MATLAB also creates licens-
ing complexities that have been circumvented by recod-
ing in Cþþ, using OpenCV and QTlibraries. Finally,
a significant improvement in performance is obtained
by recoding. The current ADCI system comprised six
functional modules: metaphase ranking (ranking),
chromosome classification (classifying), gradient
vector flow contour extraction (GVF), DCE, centreline
interpolation (interpolation) and centromere detection
(centromere). Additional modules under development
improve the accuracy of DC analysis (sister chromatid
separation with integrated intensity Laplacian and
chromosome separation(11)). Figure 1 shows the flow

P. K. ROGAN ETAL.

Page 2 of 10

 at U
niversity of W

estern O
ntario on A

pril 22, 2014
http://rpd.oxfordjournals.org/

D
ow

nloaded from
 

http://rpd.oxfordjournals.org/


chart of the ADCI system, and Figure 2 gives a visua-
lised example of the ADCI process. Two versions of
ADCI, ADCI Desktop and ADCI Cluster, were devel-
oped for interactive use in desktops and handling mass
casualty events in high-performance computing clus-
ters, respectively. ADCI Desktop has a graphical user
interface (GUI) module and ADCI Cluster has a
scheduling module. The application also logs runtime
errors, and classifies them as fatal, ordinary or warnings
for debugging; the GUI displays errors in segmentation,
centreline and dicentric routines visually for chromo-
somes that have been discarded during processing.

Parallelisation

Under optimal conditions, the increased speed
brought about by a parallel algorithm can be linearly
inverse of the number of computing units available.
Most parallel algorithms are unable to achieve this
level of performance, because of overhead from inter-
process communication, latency due to scheduling
and constraints on the specific hardware used.
Applications can parallelise data and task processing.
In data parallelism, data items are distributed to dif-
ferent computing units and processed at the same
time. In task parallelism, computation on a single
data object is subdivided into multiple tasks that are
handled concurrently.

Performance estimates for unit tests were based on
repeated random selection of a typical patient sample
consisting of 200–250 metaphase cell images and sets of
46 chromosomes, from a larger repository of 1500 differ-
ent cell images obtained from irradiated (3 Gy) blood.
In the cluster and supercomputer applications, large
datasets were initially generated containing between
1025 and 18 694 patient samples before processing.

Cluster and supercomputer software application

Parallelisation of the Cþþ/OpenCV ADCI was
developed with Intel Threaded Building Blocks
(TBB), MPI or OpenMP, depending on the system
used. Elements of the most time-consuming functions
in ADCI were themselves parallelised.

Chromosomes were identified by binary connected
component labelling (referred to as binary image la-
beling: 6,7). By profiling the ranking module, binary
image labelling uses 47 % time of total processing
time. Since most metaphase images selected by the
ranking module are ‘nice’ images, chromosomes
occur as a well-separated distribution with regular
morphologies. This limits the number of preliminary
connected components in an image. In high ranked
metaphase images, the number of total preliminary
connected components is effectively a constant. The
parallel binary labelling algorithm divides it into
several sub-images. The sub-images are labelled by re-
cursively calling the parallel binary image labelling

method. Labelled sub-images are combined to form a
labelled complete image. In parallel ADCI, during
the first pass, a metaphase image is divided into two
sub-images in horizontal direction, and sub-images
are divided recursively in the same way. This occurs
until the size of sub-images fulfills the stopping condi-
tion, which is termed, the ending sub-images. Each
ending sub-image completes its first scan serially,
returning a local equivalence set and the correspond-
ing labelled ending sub-image. This process can be
executed in parallel for all ending sub-images.

To solve the energy function in GVF module, circu-
lant tri-diagonal matrices have to be repeatedly
inverted. These matrices are circulant, sparse but not
strictly tri-diagonal, whose general form is expressed
as

M ¼

b c � � � a
a b c � � �
..
. . .

. . .
. ..

.

c � � � a b

2
6664

3
7775;

where a, b and c are usually non-zero and all other cells
are zero. Inversion of a circulant matrix also results in a
circulant matrix. Matrix inversion can be simplified to
solve the linear system represented by the matrix. As
the matrices in GVF are always sparse tri-diagonal, a
fast solution, the Thomas algorithm(12), can be used to
solve the linear system. Implementation, also called
odd-even reduction(13), requires two sets of operations.
In the forward substitution phase, even rows in the
matrix are eliminated by substituting the row above
and the row below with elements in the current row.
This process is repeated until only the first and the last
rows remain. After solving this two-row matrix,
unknown cells are solved in back substitution phase in
the reverse order of the forward substitution phase.
Every row in the matrix is only eliminated once in
forward substitution and every unknown is calculated
once in back substitution. The elimination of even rows
in forward substitution and solving of unknowns in
back substitution are executed in parallel.

RESULTS

Visualisation of image segmentation results

ADCI’s graphical user interface provides results of inter-
mediate and final stages of image processing for the
metaphase ranking and chromosomal analyses steps in
the process. Typical results are presented in Figure 2.

Expert evaluation of ADCI

Experts in cytogenetic biodosimetry at University of
Western Ontario, Health Canada and Atomic Energy
of Canada processed images from radiation-exposed
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Figure 1. Flow chart of ADCI system. Light shaded shapes depict data in ADCI. Shading represents functional modules.
In the box indicating three categories of metaphases, the strikethrough indicates that the ‘overspread’ images are discarded
and the arrow indicates the rank: ‘nice’ metaphases have higher ranks than those with a significant number of ‘overlapped’

chromosomes.

Figure 2. Example of outputs produced by the functional software modules. The default parameter for the ranking module
selects the best 50 images of all DAPI-stained metaphases in a sample(7), though any number of ranked images can be
processed. For each selected image, the classifying module segments individual chromosomes and classifies each into a single
chromosome class or chromosome cluster class. Single chromosomes are analysed by a series of segmentation processes(4,5).
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samples with the Desktop ADCI software. Although
all steps are integrated in a single application, the
results of each step (Figure 2) are visualised once
sample processing is complete. The system can
process either single or multiple samples. For
ranking, ADCI currently uses a pre-trained set of
image data to classify new sets of images; however,
custom training sets may be substituted. After
metaphase ranking is completed, the number of top-
ranked cells is selected for subsequent image process-
ing. Individual chromosomes are then extracted by
binary thresholding of the objects in each image
(threshold values can be manually optimised). Over-
thresholding separates touching chromosomes into
distinct objects. However, it can also result in chromo-
some fragmentation. Under-thresholding has the op-
posite effect. It promotes clustering of multiple
chromosomes. An area threshold is applied to filter
out interphase nuclei and groups of several over-
lapping chromosomes. Overlapping or touching
chromosome pairs are detected(14), and can be either
eliminated or included in subsequent steps by spe-
cifying the size of the window circumscribing a
blob. Selected blobs (predominantly individual chro-
mosomes) are then segmented to define accurate

chromosome boundaries and the chromosome centre-
line is extracted. Although segmentation and centre-
line interpolation parameters can be altered, these
values are already optimised for chromosomes. The
location of the first centromere of each chromosome,
determined from the global width and intensity pro-
files, is masked prior to searching for the second
centromere, if present. The default masking area, a
percentage of chromosome area, can be modified, as
well as the normalised distance between the two cen-
tromeres. If the distance between two centromeres
exceeds this minimum value, that chromosome will be
labelled as dicentric. A summary of the analysis of
eight slides analysed by two experts is shown in
Figure 3. The software has a high false-positive rate,
compared with ground truth; however, both had com-
parable sensitivity of detecting known DCs.

Parallelisation results

ADCI has been developed, modified and tested on
desktop, cluster and supercomputer computing
systems. The most significant performance improve-
ments resulted from data parallelisation. In the com-
plete ADCI, task parallelism is applied only when

Figure 3. Results of ADCI image analysis for 3Gy exposure. Default and optimised refer to settings for chromosome
boundary thresholding used in chromosome separation and the minimum distance between centromeres and radius of first
centromere mask. Each chromosome was analysed by ADCI and independently by two experts. In the lower right panels, the

y axis indicates the number of chromosomes counted.
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there is sufficient residual parallel computing capacity
remaining after data parallelisation has taken place.
Our previous studies suggested that separate code
parallelisation of these components would significantly
expedite their performance(15).

Task parallelisation

The time requirement of parallel binary image label-
ling is approximately reciprocal to the number of pro-
cessors available, and depends on the number of
ending sub-images. Parallelised binary image label-
ling on an 8-core desktop was found to reduce the
labelling time by 72.3 % of its serial time requirement
after dividing each image into up to 32 subimages.
This improved the overall speed of ranking of all
metaphase images in a sample by 1.25-fold (8.5 vs.
10.8 s).

The GVF module, with the implementation of par-
allelised odd-even matrix reduction on an 8-core
desktop was shown to be 3.4 times faster than the
serial GVF module. From unit tests, parallel odd-
even reduction is able to limit the increased computa-
tion required by the growing size of matrices used in
GVF.

Desktop parallelisation

Initially, data parallelism was tested on an 8-core
desktop with metaphase ranking module (200 images,
the GVF and centreline-based modules: DCE, spline
interpolation and centromere detection). Using 8 pro-
cessors on the ranking, GVF and centreline-based
modules increased speeds by 4.8-, 7.6- and 5-fold,
respectively, relative to a single processor. The GVF
module approximately reached the theoretical optimal
speedup, which is 8-fold. In contrast, the ranking
module is unable to perform data parallelism through-
out, due to differences between individual metaphase
images. The performance of the centreline-based
modules was also affected by unbalanced workloads.
The fully functional ADCI Desktop was also tested
on the same hardware. Average time to process a
sample (250–300 images) with a serial ADCI
Desktop is 163.27 s, whereas the parallelised software
required 43.44 s, approximately one-fourth of the time
for the same sample. Overhead in the parallel version
is increased due to file loading and result committing
operations.

The processing speed of individual metaphase
images can vary within- and between-patient samples
for several reasons. Chromosomes are of unequal
length and some require more time to process.
Additionally, among metaphase images, there may be
several chromosomes that touch or overlap each
other, forming a chromosome cluster. Processing a
chromosome cluster is slower than that required for
an individual chromosome. This results in an unequal

work distribution among the hardware threads for
different metaphase cells. When dividing the iteration
space in a parallel loop, multi-thread parallel plat-
forms like OpenMP and TBB split the work on the
basis of the iteration index. However in our case, the
workload is biased based on the size and distribution
of the chromosomes in an image, neither of which is
predictable until image processing begins.

Compute cluster parallelisation

We also tested ADCI with mid-size cluster computing
systems. Performance of metaphase ranking for
varying numbers of processors (4 to 64) was assessed
on a 1.5-Tb shared memory system running TBB.
Processing speed plateaued at 40 CPUs, taking on
average 0.65 s per sample and 3.38 h for all samples.
This was probably due to either workload imbalance,
overhead or that the implementation may not have
been optimised for this system architecture. An MPI
parallelised version of the ranking module was also
run on 1000 samples with an 8-node (8 cores/node,
48 Gb RAM) computer cluster. Sample processing
was balanced by workload sharing between proces-
sors. The total time to complete all MPI processes
was 434 s, which was limited by the slowest MPI
process. The fastest process required 101 s, and the
average time per sample was 0.43 s.

Input/Output (I/O) latency was found to be a sig-
nificant bottleneck in throughput. Loading meta-
phase images delayed the total time of the parallel
ranking module. The time spent on loading all
images in a sample could be 10-fold higher than the
actual time required for image processing. An asyn-
chronous I/O library was implemented to overlap
I/O with real image processing; however, the improve-
ment was, at best, modest (5.8 % faster).

Supercomputer parallelisation

ADCI Cluster was tested with samples on IBM Blue
Gene/Q hardware. The software version was specific-
ally modified for Blue Gene/Q because of the unique
requirements of its PowerPC-based hardware archi-
tecture. The computing units in BG/Q comprised
computing cards, containing a single chip with a 16-
core 1.6 GHz 64-bit PowerPC A2 processor and 16
GB of RAM. A computing card in BG/Q is a com-
puting node with 64 logic cores and 16 GB memory.
The BG/Q internal network topology has faster
inter-processor communication speed relative to other
systems. A group of 64 computing nodes is associated
with a single I/O node. Therefore, nodes in BG/Q do
not compete for the same file I/O system, as they do
in other cluster systems.

A total of 64 nodes containing 1024 physical cores
in BG/Q were utilised to process 1025 samples. The
I/O bottleneck in sample processing was mitigated by

P. K. ROGAN ETAL.

Page 6 of 10

 at U
niversity of W

estern O
ntario on A

pril 22, 2014
http://rpd.oxfordjournals.org/

D
ow

nloaded from
 

http://rpd.oxfordjournals.org/


combining all images in a sample into a single meta-
phase grid file (BigTIFF format). An MPI process
was created for every computing node to process
samples in serial. In total, 64 MPI processes were run
in parallel. Inside a node, 64 OpenMP threads

executed ranking of a sample in parallel. After the
ranking is completed for a sample, 50 OpenMP
threads are issued to process the top 50 metaphases in
parallel. The chunk size was set to four samples.
Figure 4 shows the deployment of ADCI on BG/Q.

Figure 4. Sequential diagram showing logic architecture of ADCI Cluster. Scheduling module directs N processes, each with
M threads, which are issued in parallel, and orchestrates coordination of the six functional modules using hardware
resources, which form the major elements in ADCI: Ranking (ranking module), chromosome segmentation (classifying and

GVF modules) and the centreline-based phase (DCE, interpolation and centromere detection modules).
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ADCI-BG/Q performs three major steps (based on
parallelisation modes) when executing sample ana-
lysis. These include TIFF file loading, ranking and
chromosome-based steps such as the chromosome
classification, GVF, DCE, interpolation and centro-
mere modules. The Tiff file loading step was paralle-
lised with MPI at a sample level. The ranking and
chromosome-based steps were parallelised with MPI
at a sample level and with OpenMP at a metaphase
level. In Table 1, a TIFF file represents a metaphase
grid file containing all metaphases in a sample. The
accumulated time sums the time spent on all samples
for each step. It gives the total workload for process-
ing all samples. The maximum and minimum time
per sample helps to understand the workload distribu-
tion among samples at each step. The loading and
ranking processing times for a sample were very

consistent, as indicated by a relatively small standard
deviation.

A problem in inaccurate centromere detection spe-
cific to ADCI BG/Q was identified during conversion
of the program, and has been traced to incompatibil-
ity between OpenCV and Tiff library implementation
on the PowerPC architecture. This issue has been
resolved. A large standard deviation in the speed of
the chromosome-based processing steps signifies that
the workload was unbalanced between samples and
emphasises the importance of scheduling workload
among processors. The total processing time for 1025
samples with ADCI-BG/Q was the longest time for
any node, which was 5090 s (1 h 24 m 50 s). With
load balancing, most nodes processed 16 samples.
However, some nodes processed 20 or 12 samples, one
chunk more or less than the median number.

Table 1. Multi-sample experiment performance on BG/Q.

Parameter File loading Ranking module Chrom. modules Complete
ADCI

Data scale 1025 tiff files 1025 tiffs *(250–300 images) 1025 tiffs * (250–300 images) * (46 chrom) 1025 tiff files
Parallel
mode

64 MPI processes 64 MPI processes * 64 threads 64 MPI processes * 50 threads

Cumulative
time: all
samples

4 h 45 m 25 s 19 h 24 m 47 s 44 h 44 m 7 s 68 h 54 m 19 s

Maximum
time per
sample

18 s 1 m 12 s 5 m 33 s 7 m

Minimum
time per
sample

16 s 1 m 7 s 2 m 16 s 3 m 41 s

Average time
per sample

16 s 1 m 8 s 2 m 37 s 4 m 2 s

Standard
deviation of
time

0.48 s 0.73 s 53.6 s 53.8 s

Table 2. Performance of ADCI versions on different hardware platforms.

Software Time per sample Accuracya

MATLAB Cþþ/OpenCV

Serial 8-core

Image ranking 266 s 10.7 s 4.1 s �98 %
Chromosome-based modules 3540 s 145 s 38.2 s 96.6 % Normal; 85 % DCs
Sister chromatid separation NA NA NA 93.1 %
Complete ADCI 63.4 m 2.6 m 0.7 m

Time to process 1000 samples
MATLAB Serial 8-core BG/Q

Complete ADCI 44 d 1.8 d 11.7 h 1.4 h

aCompared with ground truth expert cytogeneticists(1, 2); m, minutes; h, hours; s, seconds; d, days.
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SUMMARY

The current version of ADCI includes image ranking
and chromosome-based modules. Modules for
chromosome and sister chromatid separation are
under development and the final ADCI may include
these modules. The performance of these compo-
nents and ADCI are summarised in Table 2.
Regarding performance, the ranking and chromo-
some-based modules resulted in an �25-fold increase
in speed from conversion of MATLAB code to serial
Cþþ. Converting MATLAB to parallel Cþþ for an
8-core desktop computer resulted in 64-fold and 92-
fold increased speed for the ranking and chromo-
some-based modules, respectively. The complete
Cþþ ADCI software application is on average 3.7-
times faster when on an 8-core desktop, and 30-fold
on BG/Q. This allows for the 8-core parallel ADCI
Desktop and ADCI BG/Q to process �1000
samples in 12 and 1.5 h, respectively.

It is encouraging to see the impact of parallelisation
on the time to process cytogenetic biodosimetry data,
as this could potentially fulfill the performance bench-
marks required in a mass casualty. Because this ap-
proach is scalable, sourcing of additional hardware
capacity might be expected to fulfill the processing
requirements for any event where many individuals are
concerned about exposure to clinically significant radi-
ation levels. In theory, this strategy should be able to
achieve the necessary throughput for data analysis to
effectively triage those patients in need of scarce
medical resources, within clinically relevant diagnostic
and treatment windows over a wide range of exposures.
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