

Shannon pipeline plug-in:

For human mRNA splicing mutations

CLC bio Genomics Workbench plug-in CLC bio Genomics Server plug-in *Features and Benefits*

Cytognomix introduces a line of Shannon pipeline plug-ins for prediction of functionallysignificant, non-coding variants in genome or exome sequences. Comprehensive genome-scale analysis is now possible for mutations which completely or partially inactivate mRNA splice sites or activate cryptic splicing. The Shannon pipeline plug-in uses our patented and proven information theory-based binding site analysis. Its algorithm has been validated in hundreds of <u>peer-reviewed research studies of splicing</u> <u>mutations</u>, and has been recognized by the American College of Medical Genetics and Genomics in their published guidelines and standards (<u>Genet. Med. 7, 571–583</u>).

The CLC Bio Genomics Workbench is used to visualize, export, and further analyze the results of the Shannon pipeline suite.

Cytognomix Tools

The CLC-Genomics Workbench retrieves lists of variants, and either processes the data itself or funnels it to the Shannon pipeline on the Genomics Server. Genome-wide information analysis is performed, then annotated against standard databases, and resulting mutations are filtered. Results are displayed as exportable Manhattan-style plots, sortable tables, or browser tracks.

User Benefits

- The Shannon Human Splicing Pipeline starts with hundreds of thousands of variants, then hones in on the very limited number that potentially alter mRNA splicing.
- Variants are categorized by whether they fully or partially inactivate natural sites or activate cryptic sites proximate to exons or within them.
- Predicts variants missed by many other techniques
- Splicing-related changes are displayed graphically either as "Manhattan-like" plots or as BED tracks.
- Mutations can be sorted according to:
 - the change in information content,
 - the proximity to a natural splice site,
 - the relative strength of cryptic vs adjacent natural site,
 - gene and chromosome coordinate.
- Variants that affect known single nucleotide polymorphisms (SNPs) are identified and can be filtered according to allele frequency.
- Results for genome-wide high throughput sequence data obtained in ≤ 2 hours.

• Fully integrated with CLC-Bio Genomics Workbench and Genomics Server

Features

- Identifies likely mutations with industry-leading sensitivity and specificity. Trusted legacy of experimentally validated mutation predictions.
- Input accepts variants in VCF, in *Cytognomix*'s simple indexed format, or as CLC Bio variant objects.
- Can accept variants and output results with either hg18 (NCBI36) or hg19 (GRCh37) coordinates.
- Intuitive exportable results based on sensible defaults.
- Run as a standalone application on the Genomics Workbench or configured as a client-server with both the Workbench and Server.
- Fully compatible output for other CLC Bio Workbench Tools.

Innovative platform for rapid, non-coding mutation analysis

Cytognomix uses information theory-based models of mRNA splicing to analyze mutations that alter transcript structure and abundance¹⁻³. Information models rank sequences according to their individual information content (R_i in bits). Functional binding sites have R_i > 0, corresponding to $\Delta G < 0$ kcal/mol. Strong binding sites have R_i > R_{sequence} while weak sites have R_i < R_{sequence}. Variations which alter the affinity of a protein to bind there modify the R_i of the site. A 1 bit change in information content (ΔR_i) corresponds to a ≥ 2 fold change in binding affinity. This approach is applicable to any type of nucleic acid binding site, including transcription factors and other conserved non-coding sequences.

Predictions from these models are accurate²⁻⁴, as differences in individual information contents ($\Delta R_{i,}$ in bits) are related to the splicesomal affinities of natural and variant sequences^{1,5}. Pathogenicity is related to ΔR_i , which is decreased at natural splice sites and/or increased at cryptic sites⁶⁻⁷. Sites with negative R_i values are not recognized. Leaky mutations have modestly reduced R_i values. Cryptic splice sites with R_i values exceeding adjacent natural splice sites are activated². The plug-in reports minimally detectable expression changes of >2 fold⁸, or $\Delta R_i > 1$ bit, as significant.

The Shannon pipeline was initially created to address the vexing problem of assessing the many variants of unknown significance that are detected in cancer genetic testing. The pipeline has been used to reanalyze the Breast Cancer Information Core identifying many splicing mutations, most of which were previously unrecognized⁹.

The Shannon software pipeline was developed and implemented in C and Perl to perform information analysis fast on a genome-wide scale. Determining R_i values of donor and acceptor sites along a nucleotide sequence is carried out using a convolution-style, sliding-window computation on chromosomes or subsets of chromosomes. R_i values are computed with $R_i(b,I)$ information weight matrix (based on a genome-wide set of verified donor and acceptor splice sites). Variants with significant ΔR_i values are then filtered, and annotated based on the gene they reside within. For

cryptic splice sites, the distance and relative location of the adjacent natural splice site of the same polarity is reported. Inactivating and leaky natural splice sites and cryptic splicing variants are categorized. Variants with known SNP designations and respective allele frequencies are also reported.

The CLC Bio implementation allows for additional filtering of input, and produces a graphical display of both ΔR_i and final R_i values for each variant on each chromosome, a table output which can be dynamically sorted that is categorized as separate tab for each type of mutation consequence, and BEDGRAPH output suitable for genome browsing. Results may be exported to a spreadsheet format for further data exploration.

References:

1.Schneider TD. J. Theor. Biol. 189: 427-41, 1997; 2. Rogan PK et al. Hum Mutat 12:153-171, 1998; 3. Rogan PK et al. Pharmacogenetics. 13:207-18, 2003; 4. Rogan PK, Schneider TD.. Hum Mutat 6:74-76, 1995; 5. Gadiraju S, et al. BMC Bioinformatics 4:38, 2003; 6. von Kodolitsch et al Circulation 100:693-9, 1999; 7. von Kodolitsch et al. 12: 258-262, 2006; 8. Nalla VK, Rogan PK. Hum Mut. 25(4):334-42, 2012.; 9. Mucaki et al. Hum. Mut. 32:735-742, 2012.

Benchmarks

The *Shannon Human Splicing Pipeline* analyzes an average of 3198 variants/min on an I7-based server:

<u> </u>
Complete analysis time
37 m
1h 12 m
1h 22 m
1h 27 m

Performance of Shannon pipeline plug-in on complete genome sequence data^{*}

*hg18/NCBI36

Requirements and validation

The Cytognomix Shannon human mRNA splicing plug-in runs in standalone mode on the CLC Genomics Workbench V5.5 or with both the Workbench and CLC Genomics Server V.4.5 (as a standalone server or running Gridworks). Released for **Linux** and **MacOSX** Operating systems supporting Perl and gcc. Installation has been verified with Perl v.5.8.8 and 5.10.1 and gcc v.4.1.2 and v.4.4.3 with the Ubuntu 2.6.32-27 (32 and 64 bit), CentOS 2.6.18-238 (64 bit), and Fedora 16 (32 bit) kernels, and MacOSX (Lion release version 10.7.4; gcc v.4.2.1 and Perl 5.12.3) on hardware equipped with an Intel I7 processor and at least 4Gb RAM.

Support

Notice: Exclusive marketing rights for products based on **US Pat. No. #<u>5,867,402</u>** have been granted to *CytognomiX*.

Tabular results from genome-wide mutation analysis produced by *CytognomiX*'s Shannon mutation pipeline:

CLC Genomics Workbench 5.5															
Show New Save Import Export Graphics Print		ido Redo Cut	Copy Paste	Delete	Workspace Plug-ins	Download							F	Fit W	idth 100% Pan Selection Zoom In Zoom Out
Navigation Area		Complete Va	ari ×	1											
1660 V															Table Settings
📕 — 🧮 Complete Variant Informat 📤	1	Rows: 7,073	Effect	t of var	riants on Ri and	other relev	ant informat	tion	Filter:				(•	1.1.1 ? ほ
🗌 📰 Inactivating Variant Inform															Column width
Leaky Variant Information	с.	Coordinate	Ri-initial	Ri-final		Gene Name	Location	Location	Loc Bel /	Dis	Loc of ne	Ri of	Cryptic Bire		Manual
Cryptic Variant Information	5	24171373 +	0.16	-18.46	-18.62 DONOR	C5orf17	CRYPTICSITE	INTRONIC	3'-FLANKING	17	-	-	-		Maridan
Genome Wide Manhattan F	7	27135485 +	-9.08	9.56	18.63 DONOR	HOTAIRM1	CRYPTICSITE	INTRONIC	3'-FLANKING	193	27135292	6.95	GREATER	-I	 Show column
Chr I Plot (Delta Ri)	9	1409541 +	-1.19	0.31	1.50 DONOR	CACNA1B	CRYPTICSITE	INTRONIC	3'-FLANKING	4	140954190	8.19	LESS		🗹 Chromosome
Chr 2 Plot (Delta Ri)	10	1170597 +	-1.14	0.36	1.50 DONOR	ATRNL1	CRYPTICSITE	INTRONIC	3'-FLANKING	4	117059758	7.96	LESS		V Coordinate
Chr 3 Plot (Delta RI)	10	98807726 -	-0.91	1.91	2.82 ACCEPTOR	ARHGAP19	CRYPTICSITE	INTRONIC	3'-FLANKING	134	98807592	3.86	LESS		
Chr 4 Plot (Delta RI)	11	17548541 -	2.05	3.31	1.26 ACCEPTOR	USH1C	CRYPTICSITE	INTRONIC	3'-FLANKING	183	17548358	9.62	LESS		✓ Strand
Chr S Plot (Delta Ri)	11	5345008 +	1.58	-1.05	-2.63 DONOR	OR5186	CRYPTICSITE	INTRONIC	3'-FLANKING	17	5344991	0.06	GREATER		🗹 Ri-initial
Chr 7 Plot (Delta Ri)	12	10332225 -	1.84	-9.04	-10.88 ACCEPTOR	RP11-05	CRYPTICSITE	INTRONIC	3"-FLANKING	/5	10332150	5.2	LESS		Ri-final
Chr 9 Plot (Delta Ri)	14	21404001 -	-2.51	9.76	2.72 DONOR	LINC45A	CRYPTICSITE	INTRONIC	3-FLANKING	167	01/7/292	7 /1	LESS		
Chr Q Plot (Delta Ri)	16	3598755 -	-7.40	3.48	10.88 ACCEPTOR	NI RC3	CRYPTICSITE	INTRONIC	3'-FLANKING	1	3598754	817	LESS		∠ ARi
Chr 10 Plot (Delta Ri)	17	10351692 -	2.93	1.91	-1.03 ACCEPTOR	MYH4	CRYPTICSITE	INTRONIC	3'-FLANKING	248	10351444	2.67	GREATER		🕑 Туре
Chr 11 Plot (Delta Ri)	17	73816184 -	4.80	2.80	-2.01 ACCEPTOR	AC08728	CRYPTICSITE	INTRONIC	3'-FLANKING	49	73816135	3.15	GREATER		K Gene Name
Chr 12 Plot (Delta Ri)	17	73816190 -	-10.29	1.38	11.67 ACCEPTOR	AC08728	CRYPTICSITE	INTRONIC	3'-FLANKING	55	73816135	3.15	LESS		
- Chr 13 Plot (Delta Ri)	20	3674074 -	-0.67	0.78	1.44 ACCEPTOR	SIGLEC1	CRYPTICSITE	INTRONIC	3'-FLANKING	295	3673779	3.32	LESS		✓ Location
- Chr 14 Plot (Delta Bi)	22	30857538 -	0.86	-0.51	-1.37 ACCEPTOR	SEC14L3	CRYPTICSITE	INTRONIC	3'-FLANKING	71	30857467	8.37	LESS		Location Type
- Chr 15 Plot (Delta Bi)	Х	13337617 +	1.70	5.30	3.59 DONOR	GS1-600	CRYPTICSITE	INTRONIC	3'-FLANKING	4	13337613	2.03	GREATER		V Loc. Rel. to exon
Chr 16 Plot (Delta Ri)	X	1541330	0.69	2.89	2.20 ACCEPTOR	F8	CRYPTICSITE	INTRONIC	3'-FLANKING	278	154132800	7.0	LESS		
	1	2127985	-1.48	0.02	1.50 DONOR	RP11-33	CRYPTICSITE	INTRONIC	5'-FLANKING	-42	212798575	6.6	LESS		Dist. from nearest nat. site
Q <= enter search term>		1522857 +	-0.02	1.13	1.75 ACCEPTOR	RP1-14N	CRYPTICSITE	INTRONIC	5'-FLANKING	-138	155160100	-	-		🗹 Loc. of nearest nat. site
	1	1551726 +	2.52	1.22	-1.45 ACCEPTOR	RP11-20	CRYPTICSITE	INTRONIC	5'-FLANKING	-/1	155172012	-0.1	GREATER		Ri of nearest nat, site
Toolbox 🛛 🔀	1	2409661 -	1.83	-16.80	-18 63 DONOR	RGS7	CRYPTICSITE	INTRONIC	5'-ELANKING	-83	240966203	3.72	LESS		
	2	1794046 +	4.01	1.32	-2.69 ACCEPTOR	AC00994	CRYPTICSITE	INTRONIC	5'-FLANKING	-166	179404833	3.29	GREATER		Cryptic Ri relative to hat.
X Launch Pipeline	2	1523142 +	-2.38	8.50	10.88 ACCEPTOR	RIF1	CRYPTICSITE	INTRONIC	5'-FLANKING	-1	152314274	12.34	LESS		🗹 rsID if available
🗠 🚰 Classical Sequence Analysis	3	38139137 +	1.81	-0.36	-2.18 ACCEPTOR	DLEC1	CRYPTICSITE	INTRONIC	5'-FLANKING	-97	38139234	0.11	GREATER		Average heterozygocity
🗠 👰 Molecular Biology Tools	3	9807660 -	-1.24	2.49	3.73 DONOR	CAMKI	CRYPTICSITE	INTRONIC	5'-FLANKING	-148	9807808	4.37	LESS		∠ Input coordinate
P 🚘 BLAST	3	58368239 +	4.75	2.58	-2.16 ACCEPTOR	PXK	CRYPTICSITE	INTRONIC	5'-FLANKING	-129	58368240	15.23	LESS		
🕈 🚰 NGS Core Tools	4	1562814 +	0.80	-0.75	-1.55 ACCEPTOR	AC09746	CRYPTICSITE	INTRONIC	5'-FLANKING	-27	156281436	11.93	LESS		🕑 Input variant
🗢 🔚 Track Tools	7	43590042 +	0.45	3.58	3.13 ACCEPTOR	HECW1	CRYPTICSITE	INTRONIC	5'-FLANKING	-1	43590043	7.59	LESS		🗹 Input ID
🕈 🙀 Resequencing Analysis	7	1072043 +	1.84	4.07	2.23 ACCEPTOR	DUS4L	CRYPTICSITE	INTRONIC	5'-FLANKING	-126	-	-	-		Ealast All
🗣 🚖 Transcriptomics Analysis	6	15500172	-1.32	2.51		TUSCO	CRYPTICSITE	INTRONIC	5 FLANKING	-4	15500174	12.55	LESS		Select All
🕈 🚾 Epigenomics Analysis	10	44140111 +	916	11.56	2 40 ACCEPTOR	ZNE32-AS3	CRYPTICSITE	INTRONIC	5'-ELANKING	-186	44140297	-15.0	GREATER		Deselect All
🕈 🖻 De Novo Sequencing	10	75672761 -	0.21	-11.38	-11.59 DONOR	C10orf55	CRYPTICSITE	INTRONIC	5'-FLANKING	-39	75672800	5.75	LESS		
Workflows	11	74556113	1 19	6.09	1 60 DONOR	YRRA1	CRVPTICSITE	INTRONIC	5'-ELANKING	-1	74556117	6.54	IESS	•	
													•		
Processes Toolbox															
🎯 🗐 Idle															0 rows selected

``Manhattan``-like plot output of potential splicing mutations (unfiltered) on chromosome 1 generated by *CytognomiX*'s Shannon mutation pipeline. Inset shows context-dependent mutation detail generated by mouse-over:

Graphical custom genome browser track output produced by *Cytognomix*'s Shannon mutation pipeline indicating information changes of a series of mutations occurring in the *BRCA1* gene (Mucaki et al. Hum. Mut. 32:735-742, 2012):

